IONOS

Red Hat OpenShift Container Platform
4.17 on IONOS Cloud:

Deployment Guide

Version 1.3, February 13th 2026



Table of Contents

1 Introduction
1.1 Pur fth men
1.2 Introduction to IONOS Cloud
1.2.1 IONOS Cloud Compute Engine model
1.2.2 Dat nter Designer
1.2.4 Virtual Data Center
1.3 Introduction to Red Hat OpenShift Container Platform
2 Red Hat OpenShift Container Platform installation details
2.1 Understanding OpenShift Container Platform Installation Method Differences
2.2 Understanding connected and disconnected environments
2.3 Understandin nShif ntainer Platform installation logi
3 IONOS Cloud Service and OpenShift Requirements
3.1 Description of relevant IONOS Cloud services
3.1.1 Compute (IONOS Cloud Dedicated Core Server)
3.1.2 Disk Storage (IONOS Cloud Block Storage)
3.1.3 Object Storage (IONOS Cloud Object Storage)
3.1.4 NAT Gateway (IONOS Cloud Managed NAT Gateway)
3.1.5 DNS (IONOS Cloud DNS)
3.1.6 LoadBalancer (IONOS Cloud Managed Network Load Balancer)

3.2 OpenShift Container Platform resource requirements on IONOS Cloud
3.2.1 Compute

3.2.2 Storage
3.2.3 NTP
3.2.4 DNS

3.2.5 Load Balancing
3.3 General prerequisites needed
3.3.1 Pull Secret
3.3.2 SSH-Key
3.3.3 Platform selection
4 Prepare general resources for the IONOS Cloud
4.1 Log in to the IONOS Cloud Data Center Designer (DCD)
4.2 Generate authentication token
4.3 Adding SSH Key
4.4 Reserve public IPv4 addresses
5. Architectural overview
6 Deploy Openshift Container Platform with the Agent-based Installer on IONOS Cloud

6.1 General description
6.1.1 About the Agent-based Installer




6.1.2 Understanding the Agent-based Installer
6.1.3 Agent-based Installer Workflow

6.2 Check Prerequisites

6.3 Create the IONOS Cloud VDC and the Management Server
5.3.1 R inq Terraf locall initial IONOS Cloud
6.3.2 Preparing the “Management” virtual machine

6.3.3 Connecting to the “Management” virtual machine
3.4 Installing r ir ftwar

6.4 Install a Highly Available OpenShift Container Platform Cluster
6.4.1 Prepare the “Terraform” working directories on the “Management” server

6.4.2 Provision IONOS Cloud Dedicated Core Servers and IONOS Cloud NAT Gateway
6.4.3 Provision IONOS Cloud Network Load Balancer for OpenShift
6.4.4 Create DNS Domain or Subdomain
6.4.5 Create DNS records
6.4.6 Set the Availability Zone for the Dedicated Core Servers in DCD
6.4.7 Create the Agent-based Installer ISO image
6.4.8 Attach “Minimal ISO” as CDROM drive and set boot order
6.4.9 Monitor the OpenShift Container Platform Installation progress
6.4.10 Post-install configuration
7 Day 2 operations

7.1 Configure persistent storage

7.2 Configuring Certificates for Ingress and API
7.2.1 Replacing the default Ingress Certificate
7.2.2 Replacing the default API Server Certificate

7.3 Conf : Shift | Redqi

7.4 Configure OpenShift Monitoring

7.5 Scaling the OpenShift Cluster
7.5.1 Adding Worker N he CI r

7.6 OpensShift Container Platform updates
7.6.1 Understanding OpensShift updates
7.6.2 Updating to the next OpenShift z-stream maintenance release
7.6.3 Uparading to the next OpenShift minor release

8 Troubleshooting and Support
8.1 Gathering log data from a failed Agent-based installation
8.2 General OpenShift Container Platform Troubleshooting




1 Introduction

1.1 Purpose of the document

Regardless if a customer's application landscape is about to be modernized or already consists
of applications developed in a microservice architecture, organizations are looking for leading
application platforms to build, deploy and operate their most critical business workload.

Many organizations are looking for sovereign and local cloud environments as an alternative to
global hyperscalers.

Sovereign cloud usage is often driven by regulatory, security, and operational considerations.

e Some of the key reasons are:

Data Compliance and Legal Requirements
Data Residency and Sovereignty

Security and Risk Mitigation

Independence from Foreign Cloud Providers
Digital Sovereignty and Strategic Autonomy
Economic and Innovation Benefits

Trust and Transparency

O O O O O O O

As a leading sovereign cloud provider, IONOS Cloud is partnering with Red Hat to enable Red
Hat OpenShift Container Platform deployment.

The goal of this document is to describe a semi-automated deployment of OpenShift Container
Platform on top of IONOS Cloud.

This comprehensive walkthrough for different installation scenarios will help to keep aligned with
recommended practices for initial installation and also provides valuable insights for typical
operational tasks in the “Day 2” section of the document.

Within this deployment guide, a default OpenShift Container Platform High Availability Cluster
(consisting of 3 Control-Plane Nodes and 2 Worker Nodes) will be described, as this is the bare
minimum recommended for production environments.

Please note that the deployment guide is partially focused on manual steps to deploy the
OpenShift Container Platform Cluster on IONOS Cloud and does not describe a fully automated
installation approach.

Of course, further automation is possible and recommended (please check the IONOS Cloud
API documentation for details) but it's out of the scope of this document.

This deployment guide was also used to validate the OpenShift Container Platform installation
on IONOS Cloud, as referenced in the Red Hat Ecosystem catalog.


https://catalog.redhat.com/en/cloud/detail/226877

1.2 Introduction to IONOS Cloud

IONOS Cloud offers its customers "Infrastructure as a Service" (IaaS) in the form of virtual
computing, data storage, and network resources. The customer is able to make use of these
resources on a flexible basis as required. The resources used (Cores/vCPUs, RAM, Storage)
are billed to the customer by the minute based on a price list, which is valid at the time. Billing of
external data transfers is based on data volume.

1.2.1 IONOS Cloud Compute Engine model

Provisioning

Data Center Designer (DCD)
Application Programming Interface (AP1)

Virtual Data Center (VDC)

Block Storage IP Address
_ outgoing
HOD public incoming
S50 private internal

1.2.2 Data Center Designer

IONOS Cloud provides the customer with access to a personalized web application called the
“Data Center Designer” (DCD). The DCD can be accessed via modern Internet browsers.

1.2.3 Cloud API

IONOS Cloud provides the customer with an Application Programming Interface (API). This API
gives the customer automated control over the functions from the DCD. Upon request, IONOS
Cloud will provide an API reference along with example software (Cloud-CLI) on how the Cloud
API can be used (links below).

IONOS Cloud provides access to the Cloud functionality for developers based on REST (Representational
State Transfer). All account types are able to use the Cloud API.

Scope URL
Cloud API Documentation https://api.ionos.com/docs/cloud/v6/
Cloud API Endpoint https://api.ionos.com/cloudapi/ve/



https://api.ionos.com/docs/cloud/v6/
https://api.ionos.com/cloudapi/v6/

1.2.4 Virtual Data Center

On the IONOS Cloud platform, the customer can create so-called “Virtual Data Centers” (VDC).
A VDC is a repository for all infrastructure resources ordered by the customer. Access to the
resources in a VDC — similar to operating a physical data center — is only possible via a
corresponding network or internet connection. Within a VDC, the IONOS Cloud software allows
for the distribution of various resources to different availability zones.

For more information regarding the IONOS Cloud, please refer to the IONOS Cloud Service
Catalog.

1.3 Introduction to Red Hat OpenShift Container Platform

Red Hat OpenShift Container Platform is a trusted, comprehensive, and consistent platform to
develop, modernize, and deploy applications at scale, including today’s Al-enabled apps. It
enables businesses to innovate faster with a complete set of services for bringing apps to
market on your choice of infrastructure.

OpenShift Container Platform is the leading hybrid cloud application platform, bringing together
a comprehensive set of tools and services that streamline the entire application lifecycle, from
development to delivery to management of app workloads.

Trusted by 3,000 customers across industries (including 56% of the top 25 Global Fortune 500),
it combines built-in security features with dedicated support, a trusted software supply chain,
and Red Hat Enterprise Linux as the operating foundation.

OpenShift Container Platform offers a complete and consistent application platform that can be
fully managed in the public cloud or self-managed in any environment, offering a more
integrated and streamlined platform for innovation while reducing operational complexity. The
different functionalities and layers are visualized in the following graphics:


https://docs.ionos.com/support/general-information/service-catalog
https://docs.ionos.com/support/general-information/service-catalog

& RedHat

@@ RedHat @ RedHat RedHat
Advanced Cluster Management Advanced Cluster Security Quay OpenShift
for Kubernetes for Kubernetes

Data Foundation

Multicluster management Cluster security Global registry Cluster data management

& Redhat Observability | Discovery | Policy | Compliance | Declarative security | Container RWO, RWX, Object | Efficiency |
— ) )
Openshift Configuration | Workloads management | Network segmentation | Performance | Security | Backup |
Platform Plus Threat detection and response DR Multicloud gateway

Manage workloads Build cloud-native apps Data-driven insights Developer productivity

Platform services Application services*

Image | Security scanning |
Geo-replication Mirroring | Image builds

Data services*

Developer services
+ Service mesh | Serverless + Languages and runtimes - Databases | Cache + Developer CLI | IDE
e g"‘;:;:‘m L a— - Builds | CI/CD pipelines « AP management « Data ingest and preparation « Plugins and extensions
S iner Platform - GitOps | Distributed Tracing - Integration - Data analytics - OpenShift Dev Spaces
- Log management + Messaging « A/ML + OpenShift Local
+ Cost management

Kubernetes cluster services

Install | Over-the-air updates | Networking | Ingress | Storage | Monitoring | Log forwarding | Registry | Authorization | Containers | VMs | Operators | Helm

& RedHat
Openshift
Kubernetes Engine

Kubernetes (orchestration)

&8, RedHat

: : . & Redtiat
Enterprise Linux Linux (container host operating system) il

@D oS — &

Private cloud Public cloud

Physical Virtual Edge

The architecture of Red Hat OpenShift Container Platform consists of the following key
components:

e Control Plane (Master Nodes)
o API Server — Manages Kubernetes API requests.

Controller Manager & Scheduler — Assigns workloads and maintains cluster
state.

etcd — Stores cluster metadata.
OAuth Server — Handles authentication & authorization.

O

e Worker Nodes (Compute Nodes)
o Kubelet & CRI-O — Runs containers.

o Kube Proxy & SDN — Manages networking and inter-pod communication.

e OpenShift-Specific Enhancements
Router (HAProxy) — Ingress traffic management.

o Operators & OLM — Automates app deployment.
o Persistent Storage — Supports PVs & CSl-based storage.
]

Monitoring & Logging — Uses Prometheus, LokiStack and OpenTelemetry.

e CI/CD & Developer Tools

o OpenShift Pipelines (Tekton) — Cloud-native CI/CD automation.
o Source-to-Image (S2l) — Directly converts source code to container images.
]

GitOps (ArgoCD) — Declarative application deployment.

e Security & Governance

o RBAC & Security Context Constraints (SCCs) — Role-based security policies.

o Network Policies — Controls pod-to-pod communication.



For more details, please review the Red Hat OpenShift Container Platform documentation.


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/architecture/index

2 Red Hat OpenShift Container Platform installation
details

2.1 Understanding OpenShift Container Platform Installation
Method Differences

Red Hat OpenShift Container Platform offers four different installation methods to suit various
infrastructure and operational needs:

e Automated / Installer-Provisioned Infrastructure (IPI)
o The OpenShift installer provisions and configures the required infrastructure
automatically.
o Suitable for cloud environments such as AWS, Azure, and vSphere or baremetal
host baseboard management controller (BMC) integrations
o Eases deployment by handling networking, compute, and storage provisioning.

e Full Control / User-Provisioned Infrastructure (UPI)
o Requires users to manually set up and configure the infrastructure before
deploying OpenShift.
o Provides more flexibility and customization for on-premise and bare-metal
environments.
o Best for enterprises with specific networking, security, or hardware requirements.

e Local Agent-based
o Uses pre-configured bootable images (ISO) for streamlined deployments.
o Best suited for air-gapped or disconnected environments.
o Reduces manual intervention in large-scale deployments.

e Interactive (Assisted Installer)
o A web-based guided installation provided by Red Hat Hybrid Cloud Console.
o Simplifies deployment for OpenShift clusters in various environments.
o Ideal for both connected and disconnected setups, with pre-validation
capabilities.

Please review the documentation for more details about the different deployment methods.

Each method supports to deploy a Cluster with the following characteristics:
e Highly available infrastructure with no single points of failure, which is available by
default.
e Administrators can control what updates are applied and when.


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installation_overview/ocp-installation-overview#installation-overview_ocp-installation-overview

This deployment guide describes the Local Agent-based installation method, as this is the
recommended one for setting up Red Hat OpenShift Container Platform on IONOS Cloud.

Please note that for the validation of Red Hat OpenShift Container Platform on IONOS Cloud
(as referenced in the Red Hat Ecosystem catalog), exactly this installation method was used.

Additionally, we will use some of the infrastructure preparation guidelines from the Full Control
(UPI) installation method and adapt those to the needs for IONOS Cloud.

2.2 Understanding connected and disconnected environments

The main difference between connected and disconnected installations of Red Hat OpenShift
Container Platform lies in their network connectivity and access to external resources:

e Connected Installation

O

o

Internet Access: Requires direct internet access for all machines in the cluster.
Image Retrieval: Can pull container images directly from Red Hat's online
repositories.

Updates: Allows for automatic updates and easier access to the latest
components.

Operator Hub: Utilizes the default Operator Hub and external image registries.

e Disconnected Installation

o

Network Isolation: Operates in a network-restricted environment with limited or
no internet access.

Local Resources: Requires mirroring of all necessary images and content to a
local container registry.

Manual Updates: Needs manual intervention for updates and new component
installations.

Custom Configuration: Uses a local mirror registry to host required images and
content, with additional setup steps such as:

Configuring custom Network Time Protocol (NTP) settings.

m Creating a mirror registry for Red Hat OpenShift.

m Using tools like oc-mirror to mirror images locally.

m Adjusting installation configuration files to point to local resources.

e Key Considerations for Disconnected Installations

o

Security and Compliance: Provides better control over the environment and
reduces external dependencies.

Self-contained Environment: Ensures all necessary components are available
locally without relying on external sources.

Preparation Effort: Requires more setup steps and resources before installation
compared to connected installations.


https://catalog.redhat.com/en/cloud/detail/226877

o Update Process: Involves manually mirroring and applying updates to the
cluster.

Disconnected installations are ideal for organizations with strict security requirements or those
operating in environments with limited or no internet connectivity. While they offer greater control
and isolation, they require more preparation and ongoing manual management than connected
installations.

More details are available in the Red Hat OpenShift Container Platform documentation.

This deployment guide describes a connected Red Hat OpenShift Container Platform
installation details for IONOS Cloud.

Please note that for the validation of Red Hat OpenShift Container Platform on IONOS Cloud
(as referenced in the Red Hat Ecosystem catalog), the connected installation was used.

2.3 Understanding OpenShift Container Platform installation
topologies

Red Hat OpenShift Container Platform offers several deployment topologies to accommodate
various infrastructure needs and use cases:

e Highly available OpenShift Cluster (HA):

Traditional deployment with multiple nodes

Consists of at least three control plane nodes and two or more worker nodes
Highly scalable, supporting thousands of instances across hundreds of nodes
Provides high availability and fault tolerance

Suitable for production environments requiring scalability and complex
applications

O

O O O O

e Three-node OpenShift Cluster (Compact):

Reduced minimum system requirements compared to multi-node deployments
Consists of three nodes that can run both control plane and applications
Balances resource efficiency with high availability

Suitable for smaller deployments or environments with limited resources

o

o O O

e Single-node OpenShift Cluster (SNO):
o Allows running OpenShift on a single node
o ldeal for edge use cases and environments with space or resource constraints
o Introduced to support edge computing scenarios
o Offers the core functionality of OpenShift in a minimal footprint

10


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/disconnected_environments/index
https://catalog.redhat.com/en/cloud/detail/226877

Please note the generally recommended minimum cluster resources for the different topologies
and particular check with the requirements for OpenShift on IONOS Cloud in chapter 3:

Topology Number of Number of vCPU Memory Storage
control compute
plane nodes | nodes
Single-node | 1 0 8 vCPUs 16 GB of 120 GB
cluster RAM
Compact 3 Oor1 8 vCPUs 16 GB of 120 GB
cluster RAM
HA cluster 3to5 2 and above |8 vCPUs 16 GB of 120 GB
RAM

Please remember: Within this deployment guide, only the default OpenShift High Availability
Cluster (consisting of 3 Control-Plane Nodes and 2 Worker Nodes) topology will be described,
as this is the bare minimum recommended for production environments and required for the

Red Hat Ecosystem certification.

Please remember: Minimum requirements, especially for the Control Plane Nodes may not fit
to the intended usage of the Red Hat OpenShift Container Platform Cluster. Depending on the
expected workload (number of deployments, pods, Operators, ...) and the expected size of the
Cluster (number of Compute Nodes), it is highly recommended to already start with appropriate
resources. More details can be found in the 8.5 Scaling the OpenShift Cluster chapter of the
deployment guide.

11



https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/preparing-to-install-with-agent-based-installer#agent-based-installer-recommended-resources_preparing-to-install-with-agent-based-installer
https://catalog.redhat.com/en/cloud/detail/226877

3 IONOS Cloud Service and OpenShift
Requirements

3.1 Description of relevant IONOS Cloud services

3.1.1 Compute (IONOS Cloud Dedicated Core Server)

Under the term “Compute Engine”, IONOS Cloud offers its customers "Infrastructure as a
Service" (IaaS) in the form of virtual computing, data storage, and network resources. The
customer is able to make use of these resources on a flexible basis as required. The resources
used (Cores/vCPUs, RAM, Storage) are billed to the customer by the minute based on a price
list, which is valid at the time.

For OpenShift Container Platform, we are using the Dedicated Core Server variant:

These virtual machines run on dedicated CPU Cores. With Dedicated Core Servers you gain full
access to the provisioned CPU resources,free from resource sharing with other virtual machines
on the same physical host. This guarantees optimal performance, stability, reduced latency and
predictable performance. You can freely configure the number of cores and RAM required for
your workloads, while choosing from the available CPU types available in your current VDC.
Dedicated Core Servers can boot from a storage volume, a CD-ROM, or a NIC.

3.1.2 Disk Storage (IONOS Cloud Block Storage)

IONOS Cloud Hard Disk Drive (HDD) and Solid State Drive (SSD) Block Storage allow the
customer to make use of a dual-redundant storage system. Each block storage created by the
customer is stored on two storage servers, providing active-active redundancy. For additional
data protection, every storage server is based either on a hardware RAID system or on a
software RAID system.

For Solid State Drive volumes, IONOS Cloud offers two performance classes that can be
selected at the time of ordering the volume. SSD Premium is optimized for high performance
while SSD Standard is recommended for fast data access with general-purpose scenarios.

For OpenShift Container Platform, we are using the SSD Premium class.

3.1.3 Object Storage (IONOS Cloud Object Storage)

IONOS Cloud Object Storage is a secure, scalable storage solution that offers high data
availability and performance.

The product adheres to the S3 API standards, enabling the storage of vast amounts of
unstructured data and seamless integration into S3-compatible applications and infrastructures.

12


https://docs.ionos.com/support/general-information/service-catalog#dedicated-core-server
https://docs.ionos.com/support/general-information/service-catalog#ionos-cloud-block-storage
https://docs.ionos.com/support/general-information/service-catalog#ionos-object-storage

IONOS Cloud Object Storage is included with every contract, with no need for additional
registration or activation. Through a user-friendly graphical interface, as well as standard
S3-compatible Object Storage clients, customers can efficiently manage their objects and
configure access controls using Bucket Policies in accordance with the S3 Object Storage
standard.

3.1.4 NAT Gateway (IONOS Cloud Managed NAT Gateway)

In all locations, IONOS Cloud provides a Managed Network Address Translation (NAT)
Gateway. This service is exposing a Source NAT gateway which means it allows access from
the virtual instance to the internet but blocks requests from the internet to the virtual
infrastructure. This enables internet access to virtual machines without exposing them to the
internet by a public interface. While being "hidden" from the internet and not being exposed to
threats, the virtual machine still can initiate a connection to the customizable targets on the
internet, e.g., to download new software updates or patches.

3.1.5 DNS (IONOS Cloud DNS)

IONOS Cloud DNS allows customers to publish Domain Name System (DNS) zones for their
domains and subdomains on public Name Servers.

Customers can manage their DNS zones and records via the Cloud DNS API and also create
and manage Reverse DNS records for IPv4 and IPv6 addresses.

The IONOS Cloud Name Server infrastructure is distributed across 14 points of presence
(POPs) in Europe and the USA to ensure fast and reliable DNS resolution for customers in
these locations.

3.1.6 LoadBalancer (IONOS Cloud Managed Network Load Balancer)

IONOS Cloud offers a Managed Network Load Balancer (NLB) that is balancing layer 4/
TCP-based network traffic. This service is available in all locations.

Network Load Balancers can be provisioned as a private as well as a public load balancer. A
public load balancer requires the configuration of a reserved public IP address for the target
configuration. The network load balancer allows the configuration of multiple, individual load
balancer rules which can be applied to virtual machines being members of the listener LAN.

13


https://docs.ionos.com/support/general-information/service-catalog#managed-nat-gateway
https://docs.ionos.com/support/general-information/service-catalog#dns
https://docs.ionos.com/support/general-information/service-catalog#managed-network-load-balancer

3.2 OpenShift Container Platform resource requirements on
IONOS Cloud

3.2.1 Compute

IONOS Cloud offers different Compute Engine services. For OpenShift Container Platform, it is
required to choose the Dedicated Core Server offerings, as this provides the best performance
for the OpenShift Container Platform Nodes.

Itis generally recommended to provide sufficient compute resources, especially for the Control
Plane Nodes of OpenShift Container Platform.

As we do not have a deeper integration of OpenShift Container Platform to the IONOS Cloud at
this time, we can’t use i.e. ControlPlaneMachineSets to easily scale the Control-Plane Nodes as
our Cluster grows over time.

For this reason, it is recommended to start with 8 vCPUs and 16 GB RAM for Control-Plane
Nodes.

Worker-Nodes should be sized according to the expected application workload but should
respect the required minimum for vCPU and Memory. Within this deployment guide, we are
using the recommended 4 vCPUs and 8GB RAM for Worker Nodes.

3.2.2 Storage

OpensShift Container Platform is sensitive to disk performance, and faster storage is
recommended, particularly for et cd on the Control-Plane Nodes which require a 10 ms p99
fsync duration.

Note that on many cloud platforms, storage size and IOPS scale together, so you might need to
over-allocate storage volume to obtain sufficient performance.

Tests have shown that on IONOS Cloud, 600GB SSD Premium volumes do have the needed
IOPS and latency for running et cd and other Control-Plane components.

You can learn more about the et cd disk backend performance requirements in the following
Red Hat Solution: https://access.redhat.com/solutions/4770281

As the disk performance needs for Worker Nodes are lower, we can use the recommended
120GB SSD Premium volume size here.

3.2.3NTP

OpenShift Container Platform clusters are configured to use a public Network Time Protocol
(NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is
being deployed in a disconnected network, you can configure the cluster to use a specific time
server. For more information, see the documentation for Configuring chrony time service.

14


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/preparing-to-install-with-agent-based-installer#agent-based-installer-recommended-resources_preparing-to-install-with-agent-based-installer
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/machine_management/managing-control-plane-machines#cpmso-about
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_on_any_platform/installing-platform-agnostic#installation-minimum-resource-requirements_installing-platform-agnostic
https://access.redhat.com/solutions/4770281
https://docs.openshift.com/container-platform/latest/installing/install_config/installing-customizing.html#installation-special-config-chrony_installing-customizing

3.2.4 DNS

In OpenShift Container Platform deployments, DNS name resolution is required for the following
components:

e The Kubernetes API

e The OpenShift Container Platform application wildcard

e The control plane and compute machines

Reverse DNS resolution is also required for the Kubernetes API, the control plane machines,
and the compute machines. It is recommended to use a DHCP server to provide the hostnames
to each cluster node.

Please review the official OpenShift documentation to prepare all the needed DNS
configurations.

3.2.5 Load Balancing

Before you install OpenShift Container Platform, you must provision the API and application
Ingress load balancing infrastructure. In production scenarios, you can deploy the API and
application Ingress load balancers separately so that you can scale the load balancer
infrastructure for each in isolation.

The load-balancing infrastructure must meet the following requirements:

API load balancer: Provides a common endpoint for users, both human and machine, to
interact with and configure the platform. Configure the following conditions:

e Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or
SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name
Indication (SNI) for the API routes.

e A stateless load balancing algorithm. The options vary based on the load balancer
implementation.

Configure the following ports on both the front and back of the load balancers:

Port Back-end Internal External Description
machines (pool
members)

6443 Control plane. V| v Kubernetes API
You must Server

configure the
/readyz endpoint
for the API
server health
check probe.

15


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/preparing-to-install-with-agent-based-installer#agent-install-dns-none_preparing-to-install-with-agent-based-installer

Port Back-end Internal External Description
machines (pool
members)

22623 Control Plane v Machine config

server

Application Ingress load balancer: Provides an ingress point for application traffic flowing in
from outside the cluster. A working configuration for the Ingress router is required for an

OpenShift Container Platform cluster.

Configure the following conditions:

Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or
SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name
Indication (SNI) for the ingress routes.
A connection-based or session-based persistence is recommended, based on the
options available and types of applications that will be hosted on the platform.

Configure the following ports on both the front and back of the load balancers:

Port

Back-end
machines (pool
members)

Internal

External

Description

443

The machines
that run the
Ingress
Controller pods,
compute, or
worker, by
default.

4

V|

HTTPS traffic

80

The machines
that run the
Ingress
Controller pods,
compute, or
worker, by
default.

HTTP traffic

Please refer to chapter 3.2.7 to learn more about the IONOS Cloud specific LoadBalancer
implementation and configuration.




Chapter 6 will also provide more details and examples about configuring LoadBalancing for
OpensShift on IONOS Cloud.

3.3 General prerequisites needed

3.3.1 Pull Secret from console.redhat.com

An image pull secret provides authentication for the cluster to access services and registries
that serve the container images for OpenShift components. Every individual user gets a single
pull secret generated.

The pull secret is used when installing an OpenShift Container Platform cluster.
It can be retrieved from the OpenShift Cluster Manager within the Red Hat Hybrid Cloud

Console. Go to Downloads in OpenShift Cluster Manager and find your pull secret in the
Tokens category.

Tokens

v Pull secret |l Copy Download

An image pull secret provides authentication for the cluster to access services and registries which serve the container
images for OpenShift components. Every individual user gets a single pull secret generated. The pull secret can be used
when installing clusters, based on the required infrastructure.

Important: Do not share your pull secret. The pull secret should be treated like a password.

3.3.2 SSH-Key

During an OpenShift Container Platform installation, you can provide an SSH public key. This
key is added to the ~/ . ssh/authorized keys list for the “core” user on each Red Hat
Enterprise Linux CoreOS (RHCOS) node, enabling password-less SSH access. You can then
use the corresponding private key to SSH into the nodes as the user "core."

If you do not already have an existing SSH key pair, please create one according to the
following example:
ssh-keygen -t ed25519 -C 'ocp-admin@ionos' -f <path>/<file name>

For seamless SSH access to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes, it is
recommended to add the private SSH key to your local user's SSH agent.

17


https://console.redhat.com/openshift/downloads

More detailed information can be found in the OpenShift documentation.

3.3.3 Platform selection
OpenShift Container Platform includes the Cluster Cloud Controller Manager Operator

(CCCMO). CCCMO is based on Kubernetes and the overall idea is to move the cloud controller
functionality out of the Kubernetes core and into separate Cloud Controller Managers.

A Cloud Controller Manager is a Kubernetes component that allows cloud providers to integrate
their services with Kubernetes clusters. It manages node lifecycle, load balancers, persistent
volumes, and other cloud-specific resources for some of the most popular hyperscaler Cloud
Providers.

However, your preferred sovereign cloud provider IONOS Cloud currently has no Cloud
Controller Manager integration for OpenShift Container Platform.For this reason, we are going
to deploy and configure some of the infrastructure requirements (i.e. LoadBalancer, Networking,
Storage) manually throughout this documentation.

For this reason, it is important to select the appropriate platform: external configuration
directive (in the install-config.yaml file) during the OpenShift Container Platform
installation on IONOS Cloud.

The deployment chapters within this document will honor the platform: external
requirement.

Please carefully inspect the install-config.yaml template in Chapter 6.4.1, which should
be used for the installation.

You can find more details about the OpenShift Container Platform type “External” in the
following blog post.

18


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_on_any_platform/installing-platform-agnostic#ssh-agent-using_installing-platform-agnostic
https://github.com/openshift/cluster-cloud-controller-manager-operator
https://www.redhat.com/en/blog/faster-onboarding-for-new-infrastructure-providers-with-red-hat-openshifts-external-platform

4 Prepare general resources for the IONOS Cloud

4.1 Log in to the IONOS Cloud Data Center Designer (DCD)

Open a web browser and navigate to https://dcd.ionos.com.
On the top right corner of the login screen, select your preferred language. The DCD
supports German (DE), English (EN), French (FR), and Spanish (ES) languages.

e Enter the Email Address and Password details that were obtained during the sign-up
process for an IONOS Cloud account.

IONOS LOGIN ©,

DE | EN | ES | FR
——

Ei‘i Data Center Designer (DCD) Login

Email Address
0
Password

]

Forgor Password?

© 2024 IONOS Legal Disclosure - Data Protection - T&Cs

4.2 Generate authentication token

As we are going to create the resources on IONOS Cloud with “Terraform”, it is recommended to
generate and use an authentication token when interacting with the IONOS Cloud API.

For IONOS Cloud accounts with two-factor authentication enabled (which is always
recommended!), it's mandatory to use authentication tokens.

To create a secure authentication token for authorizing to use APIs and SDKs, follow these
steps:

e Inthe DCD, go to Menu > Management > Token Management

19


https://dcd.ionos.com

IONOS Data Center Designer  Storage  Containers  Databases [VEREROUEEN

API/SDK Authentication Token Manager

Generate secure tokens for seamless access to IONOS Cloud APIs and SDKs.

1Hour % TimeTolLive (TTL) |(_Generate Token

...........

e In the API/SDK Authentication Token Manager, select Generate Token
e Press Download to save the Token to a file and Close the token-generated window.

4.3 Adding SSH Key

The DCD's SSH Keys view allows you to save and manage up to 100 public SSH keys for SSH
access setup. SSH Keys are bound to your IONOS Cloud account and not to a specific VDC.
Configuring your public SSH key as a Default key, it will be automatically pre-selected and
used for IONOS Cloud VMs deployed.

You may refer to Chapter 3.4.2 to learn more about generating SSH Key Pairs.

However, keep in mind that the SSH Key added to the IONOS Cloud DCD will not be
automatically injected into the Red Hat CoreOS Nodes deployed by the OpenShift Container
Platform installation described in this deployment guide.

For this reason, it is recommended to use one SSH Key Pair (i.e. named vdc-admin) for getting
access to the “helper” VM “Management” and a second one (i.e. named ocp-admin) provided to
the OpenShift Container Platform installation process for accessing the Red Hat CoreOS Nodes
during i.e. troubleshooting.

Please refer to the IONOS Cloud documentation about how to add the “vdc-admin” SSH
private key as a default key to the DCD.

20


https://docs.ionos.com/cloud/compute-services/compute-engine/how-tos/connect-via-ssh/manage-ssh-keys#store-ssh-keys-in-the-dcd

4.4 Reserve public IPv4 addresses

For the architecture described within this deployment guide, we will need three public IP
addresses on the IONOS Cloud:

Public IP address for the “Management” Red Hat Enterprise Linux host
Public IP address for the IONOS Cloud Network-Load-Balancer (APl and Ingress traffic
for OpenShift Container Platform)

e Public IP address for the IONOS Cloud NAT Gateway Egress

To reserve an IP address for the “Management” host, follow these steps:

In the DCD, go to the Menu > Network Services > IP Management.

In the IP Manager, select + Reserve IPs.

Enter the following IP block information:
o Name: Enter a name for the IP block, here “Management”
o Number of IPs: Enter the number of IPv4 addresses you want to reserve, here: 1
o Region: Enter the location of the IONOS Cloud data center where you want your

IPs to be available, here: Germany/Frankfurt am Main
Confirm your entries by selecting Reserve IPs.

= |ONOS

Virtual Data Centers o
Expand your network connectivity and

Al 5 accelerate the data flow in your infrastructure,
Containers >
Databases > ——
v

Storage & Backup ? IP Management VPN Gateway
Observability >
Metwork Services ;

- ——

Repeat this process for the “Load Balancer” and “NAT Gateway” public IP address.

21



5. Architectural overview

Before we are finally preparing the IONOS Cloud resources and start the OpenShift Container
Platform deployment in Chapter 6, let’s have a look at the desired architectural overview:

NAT Gateway O]

u()-J,\L? LANs: 1 | Rules: 1

@

Cd

EEEm
network

O,
o= Ml Management
E{'!“t 2 vCpus
ARl 4 GB{RAM

oHDD | 1ssD | ocps @ &

O

= Bl compute-0
4 CORES

H 8 GB RAM

O

jcem= BE control-0
8 CORES

H 16 GB RAM

oHDD | 15sD|1cps @ Q@

oHDD | 15sD|1cps &

®

o= Bl compute-1
4 CORES

@

o= Bl control-1
8 CORES

ﬂ 16 GB RAM

H 8 GB RAM

oHpD|1ssD|1cos @ @

oHpD|1ssp|1cos @ @

@

o= BE control-2
8 CORES

ﬁ 16 GB RAM

oHDD | 1ssD|1cps @ @

This screenshot from the IONOS Cloud Data Center Designer (DCD) shows an overview of the
Cloud resources to be deployed:
e Internal and Public Network (LAN 1 and LAN 2)
e Management Server connected to both networks
e Network Load Balancer and Management Server connected to LAN 2 with Internet
Access
o NAT Gateway with SNAT Rule, providing outgoing internet access for all Dedicated Core

22



Server VMs in LAN 1

Three OpenShift Container Platform Control-Plane Nodes (named control-0 to -2) with 8
vCPUs and 16GB RAM

Two OpenShift Container Platform Worker Nodes (named compute-0 to -1) with 4
vCPUs and 8GB RAM

23



6 Deploy Openshift Container Platform with the
Agent-based Installer on IONOS Cloud

6.1 General description

6.1.1 About the Agent-based Installer

OpenShift Container Platform's agent-based installation method offers significant benefits for
deploying clusters, particularly in on-premises and disconnected environments. This modern
approach combines flexibility with simplicity while addressing key operational challenges.

6.1.2 Understanding the Agent-based Installer

Agent-based installation is a subcommand of the OpenShift Container Platform installer. The
openshift-install agent create image subcommand generates a bootable ISO
image containing all of the information required to deploy an OpenShift Container Platform
cluster, with an available release image.

The configuration is in the same format as for the installer-provisioned infrastructure and
user-provisioned infrastructure installation methods.

6.1.3 Agent-based Installer Workflow

One of the control plane hosts runs the Assisted Service at the start of the boot process and
eventually becomes the bootstrap host. This node is called the rendezvous host (node 0).
The Assisted Service ensures that all the hosts meet the requirements and triggers an
OpenShift Container Platform cluster deployment.

All the nodes have the Red Hat Enterprise Linux CoreOS (RHCOS) image written to the disk.

The non-bootstrap nodes reboot and initiate a cluster deployment. Once the nodes are
rebooted, the rendezvous host reboots and joins the cluster.
The bootstrapping is complete and the cluster is deployed.

The following diagram shows the installation workflow in detail:

24



Node boot

v

Set node specific

¢ networking ¢ ¢

No
5 Canlreach
Am I node 0? assisted-service?
Yesl lYes
Run assisted-service Fetch new cluster ID
Start assisted-
installer-agent
Translate cluster ‘
manifests into
Al REST API calls
to define cluster Receive ignition
No Successful Yes Yes Is it No
Prro boostrap
validations? o
ignition?
Installation Trigger cluster Run bootstra Write image and
failed deployment P —> ignition to disk
Yes Write boot order
Is boolistra’p and reboot into
completes clustering

You can find more details about the Agent-based Installer in the OpenShift documentation.

Please remember: While the Agent-based Installer generally supports different OpenShift
Cluster topologies, only the default OpenShift High Availability Cluster (consisting of 3
Control-Plane Nodes and 2 Worker Nodes) topology is relevant, as this is the bare minimum
recommended for production environments and required for the Red Hat Ecosystem
certification.

25


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/preparing-to-install-with-agent-based-installer#about-the-agent-based-installer_preparing-to-install-with-agent-based-installer
https://catalog.redhat.com/en/cloud/detail/226877
https://catalog.redhat.com/en/cloud/detail/226877

6.2 Check Prerequisites

Before actually starting the deployment of OpenShift Container Platform, make sure that the
following prerequisites are fulfilled:

Pull Secret - see Chapter 3.5.1

SSH-Key “ocp-admin” - see Chapter 3.5.2

SSH-Key “vdc-admin” added to the IONOS Cloud DCD account - see Chapter 4.3
IONOS Cloud API Token - see Chapter 4.2

Terraform and terraform-provider-ionoscloud >= 6.4.10

6.3 Create the IONOS Cloud VDC and the Management Server

To install, configure, and manage OpenShift Container Platform from a secured virtual machine
within the VDC, we are going to prepare a small vCPU Server (2 vCPU, 4GB RAM, 30GB SSD)
using a Red Hat Enterprise Linux (RHEL) 9 image from the IONOS Cloud catalog.

This vCPU Server will be created along with the IONOS Cloud VDC and the needed networks
using “Terraform”.

6.3.1 Running Terraform locally to create initial IONOS Cloud resources

Assuming you have “Terraform” installed on your local (Linux) machine, please follow the
following steps:

e Create IONOS Cloud Token environment variable for “Terraform”
In Chapter 4.2, we generated the IONOS Cloud API token that we are now going to use
with “Terraform”.

None
# export IONOS_TOKEN="your-IONOS-API-TOKEN"

e Create infrastructure directory

None
# mkdir SHOME/infrastructure

e Create “Terraform” main.tf

26



In “Terraform”, main. tf is a commonly used file that serves as the primary
configuration file for defining infrastructure resources.
Create the main. t £ file with the following content:

None
# Configuring the provider for IONOS Cloud
terraform {
required_providers {
ionoscloud = {
source = "ionos-cloud/ionoscloud"
version = ">= 6.4.10"

# Creating the IONOS Cloud VDC in Germany/Frankfurt am Main location
resource "ionoscloud_datacenter" "openshift" {

name = "OpenShift Reference Cluster"
location = "de/fra/2"
description = "OpenShift Container Platform on IONOS Cloud"

# Configuring public LAN

resource "ionoscloud_lan" "public" {
datacenter_id
public
name

ionoscloud_datacenter.openshift.id
true
"Public"

# Configuring private LAN

resource "ionoscloud_lan" "internal" {
datacenter_id = ionoscloud_datacenter.openshift.id
public = false

name "Internal”

depends_on = |
ionoscloud_lan.public,

# Creating the Management Server in the VDC
resource "ionoscloud_vcpu_server" "management" {

name = "Management"

datacenter_id = ionoscloud_datacenter.openshift.id
cores =2

ram = 4096

27



image_name = "rhel:9"
ssh_keys = ["paste-your-public-ssh-key-called-vdc-admin"]
volume {

name = "system"

size = 30

disk_type = "SSD Standard"

bus = "VIRTIO"
}
nic {

lan = jionoscloud_lan.public.id

name = "public-nic"

dhcp = true

ips = [ var.management_server_ip[0] ]
}

# Adding a second NIC to the Management Server for the internal LAN
resource "ionoscloud_nic" "management" {
datacenter_id ionoscloud_datacenter.openshift.id

server_id = ionoscloud_vcpu_server.management.id
lan = ionoscloud_lan.internal.id

name = "internal-nic"

dhcp = true

e Create “Terraform” variables.tf
In “Terraform”, variables are defined in a variables. tf file using the variable
block.
Please change the “management_server_ip” to the Public IP reserved in Chapter 4.4
Create the variables. t £ with the following content:

None

# As we need to call Terraform multiple times due to dependencies between the
different IONOS Cloud resources,

# it makes sense to have on central variables.tf file.

# There are new variables which need to be added in every stage, so please
carefully check the comments.

## STAGE 1: Create datacenter, LANs and Management host



# External IP for the management host, as reserved in the IONOS Cloud DCD
IP-Management tool
variable "management_server_ip" {

description = "External IP Management Server"
type = list(any)
default = ["xxx.xxx.7.70"]

e “Terraform” stages to be executed:
o Change into the SHOME/infrastructure directory
o Initialize (terraform init)
m Prepares the working directory by downloading provider plugins and
configuring backends.
o Plan (terraform plan)
m Creates an execution plan, showing what changes will be made to match
the desired state.
o Apply (Deploy) (terraform apply)
m Executes the plan to create, update, or destroy resources as needed.

e The “Terraform” Apply step should print out the following output:

None

datacenter-id = "XXXXXXXX=XXXX=XXXX=XXXX=XXXXXXXXXXXX"
internal-lan-cidr = "10.7.200.0/23"

internal-lan-id = "1"

public-lan-id = "2"
management-internal-ip = tolist(["16.7.200.11",])
management-public-ip = "xxx.xxx.7.70"

Those IONOS Cloud resource IDs and IP addresses will be needed in the next steps as input
variables, so please make sure to note them down.

6.3.2 Preparing the “Management” virtual machine

While working through Chapter 6.3.1 earlier, we created a small Red Hat Enterprise Linux virtual
machine on IONOS Cloud.

The purpose of this VM is to act as the management environment for the OpenShift Container
Platform Cluster to be installed.

29



You are going to connect to this machine externally via SSH key. The “Management” VM acts as
some kind of “jump-host” to the OpenShift Container Platform Nodes in case of emergency
access needed.

We will also utilize the “Management” VM to run the OpenShift Installer, prepare the ISO
images, host additional boot artifacts and eventually connect to additional systems in the
specific VDC.

6.3.3 Connecting to the “Management” virtual machine

When preparing the general IONOS Cloud resources in Chapter 4, you also added an SSH
Public Key for the Red Hat Enterprise Linux instance created in Chapter 6.3.1.

On your local machine, please add the corresponding private SSH Key to your SSH Agent for
passwordless access:

None

S eval "$(ssh-agent -s)"
Agent pid 31874

$ ssh-add <path>/vdc-admin_ssh_priv_key>

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

After that, you should be able to connect to the “Management” VM with the public IP address
assigned earlier:

None

S ssh root@management-vm-public-ip

Update the VM packages and reboot the VM afterwards:

None
$ dnf update -y

python3-resolvelib-6.5.4-5.el9.noarch
Complete!

$ reboot
$ Connection to xxx.xxx.xxx.xxx closed by remote host.

Connect again:

30



None

S ssh root@management-vm-public-ip

6.3.4 Installing required software

Note: Within this deployment guide and to keep the guide shorter, we are working as the “root”
user on the “Management” VM. This (of course) isn’t the best practice, and you should consider
creating a dedicated unprivileged user for the following activities. It's also important to harden
and secure the “Management” VM according to your organization's individual security
requirements and standards!

In the first step we installing some needed and helpful additional tools via the RPM packages
available for the RHEL server:

None

# dnf -y install nmstate jq bind-utils tmux wget bash-completion httpd git

Enable the Apache Http-Server as we will need it to serve boot artifacts later on:

None

# systemctl enable httpd.service
# systemctl start httpd

As we will later need the Apache Http-Server to host the root-fs image for Red Hat CoreQOS,
please add http as allowed service to the default IONOS Cloud RHEL image configuration:

None

# firewall-cmd --permanent --zone=public --add-service=http && firewall-cmd
--reload

Note:

It is recommended to create a more sophisticated RHEL firewall configuration for the
“Management” VM (i.e. allowing http and other services only on the internal interface), but this is
out of scope within this OpenShift Deployment Guide.

Red Hat Enterprise Linux (RHEL) does not ship with HashiCorp Terraform pre-installed.

However, you can easily install Terraform on RHEL using the yum or dnf package manager by
adding the HashiCorp repository to your system:

31



None

# dnf config-manager addrepo --add-repo

https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo

# dnf -y install terraform

As a last step, we need to download and install the OpenShift Container Platform command line
client (oc) and the Installer.

NOTE: Carefully inspect the openshift-install-1linux URL, as this specifies the actual
Red Hat OpenShift Container Platform release you are going to install.

None

# mkdir /root/bin && wget -qO-
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/4.17.27/opensh
ift-install-1linux-4.17.27.tar.gz | tar -xz -C /root/bin

# wget -qO-

https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/stable/openshi
ft-client-linux-amd64-rhel9.tar.gz | tar -xz -C /root/bin

This will download and extract the needed binary files in the /root/bin directory, which should be
in your PATH already:

None

# 11 /root/bin

total 1006020
-rw-r--r--. 1
-rwxr-xr-x. 2
-rwxXr-xr-x. 2
-rwxr-xr-x. 1

root
root
root
root

root 950 Feb 26 06:38 README.md

root 185054328 Feb 26 06:38 kubectl

root 185054328 Feb 26 06:38 oc

root 660041880 Mar 11 20:15 openshift-install

32



6.4 Install a Highly Available OpenShift Container Platform
Cluster

Within this chapter we are going to the detailed steps to configure the Cluster specific resources
on IONOS Cloud and finally install the OpenShift Container Platform Cluster using the
Agent-based Installer.

We are assuming the following names:
e Cluster Name: ocp

e Base Domain: ionos.yourdomain.de

All the following steps will be executed from the "Management" server we installed and
configured in Chapter 6.3.

6.4.1 Prepare the “Terraform” working directories on the “Management”
server

e Create IONOS Cloud Token environment variable for “Terraform”
In Chapter 4.2, we generated the IONOS Cloud API token that we are now going to use
with “Terraform”.

None
# export IONOS_TOKEN="your-IONOS-API-TOKEN"

e Create directory structure

None
# mkdir SHOME/02-provision-infrastructure $HOME/@3-configure-1b

e Create the SHOME /variables. tf file with the following content:

None
## STAGE 2: Create VMs and NAT Gateway

# IONOS Cloud Datacenter ID (see Terraform output from STAGE 1 and set
accordingly)

33


http://ionos.yourdomain.de

variable "datacenter_id" {
default = XXXXXXXX = XXXX = XXXX = XXXX = XXXXXXXXXXXX "
description = "imported IONOS Cloud Datacenter ID"

# IONOS Cloud generated CIDR for the internal LAN (see Terraform output from
STAGE 1 and set accordingly)
variable "internal_lan_cidr" {

default = "10.7.200.0/23"

description = "CIDR for the internal/private network."

# IONOS Cloud generated ID number of the internal LAN (see Terraform output
from STAGE 1 and set accordingly)
variable "internal_lan_id" {

default = "1"

description = "ID of the internal LAN"

# IONOS Cloud generated ID number of the public LAN (see Terraform output from
STAGE 1 and set accordingly)
variable "public_lan_id" {

default = "2"

description = "ID of the public LAN"

# External IP for the NAT Gateway reserved earlier as described in the
Deployment Guide
variable "nat_egress_ip" {

description = "External IP for NAT Gateway, see IONOS Cloud DCD IP-Management
Tool"

default = "XX.Xxx.132.76"

## STAGE 3: Create the IONOS Cloud Network Load Balancer (NLB) for OpenShift
API and Ingress

# External IP for the NLB reserved earlier as described in the Deployment Guide
variable "external_lb_ip" {

description = "External LoadBalancer IP API/Ingress"
type = string
default = "XXX.XXX.96.90"

34



# IP addresses for the Control Plane Nodes (see Terraform output from STAGE 2
and set accordingly)
variable "control-ips" {

type = list(any)
default = ["10.7.200.xx", "10.7.200.xx", "10.7.200.xx"]
}
# IP addresses for the Compute Nodes (see Terraform output from STAGE 2 and set
accordingly)
variable "compute-ips" {
type = list(any)
default = ["10.7.200.xx", "10.7.200.xx"]

6.4.2 Provision IONOS Cloud Dedicated Core Servers and IONOS Cloud
NAT Gateway

As IONOS Cloud offers the freedom to individually configure every compute resource to your
needs, there are no general instance types available for the Dedicated Core Server product.

Therefore, you need to follow the resource configuration (Compute and SSD storage) outlined
within this chapter, as this is exactly the required minimum production configuration that was

used for the Red Hat Ecosystem certification.

In this step, we are provisioning the needed VMs for the Control-Plane and Worker OpenShift
Nodes. As we need to rely on DHCP within the private network we created in the VDC
previously, it's needed to provision the VMs before we actually create the bootable ISO for the
Agent-based OpenShift installation.

Once the VM is provisioned, we have the DHCP assigned internal IP address we are going to
use for the static IP configuration of the OpenShift RHCOS Nodes.

The static IP configuration is needed due to the limited IONOS Cloud DHCP functionality for
private networks.

Additionally, we are also creating the IONOS Cloud NAT Gateway and a general SNAT rule to
connect our private VMs to public software repositories and NTP (Network Time Protocol)
servers. Please note that you might need a more fine-grained SNAT rule, according to your
organization's individual security requirements and standards.

35


https://catalog.redhat.com/en/cloud/detail/226877

e Create “Terraform” SHOME/02-provision-infrastructure/main.tf with the
following content:

None

# Configuring the provider for IONOS Cloud
terraform {
required_providers {
ionoscloud = {
source = "ionos-cloud/ionoscloud"
version = ">= 6.4.10"

# Creating the Control Plane Nodes
resource "ionoscloud_server" "control" {

count =3
name = "control-${count.index}"
datacenter_id = var.datacenter_id
cores =8
ram = 16384
cpu_family = "AMD_TURIN"
volume {
name = "control-${count.index}-storage"
size = 600
disk_type = "SSD Premium"
bus = "VIRTIO"
licence_type = "OTHER"
}
nic {
lan = var.internal_lan_id
name = "internal_nic"
dhcp = true
mac = "02:01:e1:40:fe:5S8{count.index}" #setting a predictable MAC address,
as we need this in the AgentCongfig.yaml
}

# Creating the Compute Nodes

resource "ionoscloud_server" "compute" {
count =2
name

"compute-${count.index}"



var.datacenter_id

datacenter_id

cores =4
ram = 8192
cpu_family = "AMD_TURIN"
volume {
name = "compute-S${count.index}-storage"
size = 120
disk_type = "SSD Premium"
bus = "VIRTIO"
licence_type = "OTHER"
}
nic {
lan = var.internal_lan_id
name = "internal_nic"
dhcp = true
mac = "02:01:e1:50:fe:5S8{count.index}" #setting a predictable MAC address,
as we need this in the AgentCongfig.yaml
}

# Creating the NAT Gateway

resource "ionoscloud_natgateway" "openshift" {
datacenter_id = var.datacenter_id
name = "NAT Gateway OpenShift"

public_ips = [var.nat_egress_ip]
lans {

id = var.internal_lan_id

gateway_ips = [cidrhost(var.internal_lan_cidr,1)]
}

## Adding NAT Gateway SNAT Rule for Internet Access
resource "ionoscloud_natgateway_rule" "internet_access" {
datacenter_id = var.datacenter_id
natgateway_id = ionoscloud_natgateway.openshift.id

name = "internet access"
type = "SNAT"

source_subnet = var.internal_lan_cidr
public_ip = var.nat_egress_ip

37



e Create “Terraform” SHOME /02-provision-infrastructure/outputs.tf with
the following content:

None
output "nat-gateway-internal-ip" {
value = ionoscloud_natgateway.openshift.lans[@].gateway_ips
description = "Internal IP of the NAT Gateway, needs to be the default GW for
all vMs"
}

output "control-plane-ips" {
value = [for control in ionoscloud_server.control :
format (
“Name: %s | IP: %s",
control.name,
control.primary_ip

)]

description = "IP address for the VM, needed for static IP config in
agent-config.yaml"

}

output "compute-node-ips" {
value = [for compute in ionoscloud_server.compute
format (
"Name: %s | IP: %s",
compute.name,
compute.primary_ip
)]
description = "IP address for the VM, needed for static IP config in
agent-config.yaml"

}

e Create symbolic link to the variables. tf file created earlier:

None
# 1n -s SHOME/variables.tf SHOME/02-provision-infrastructure/variables.tf

38



e Editthe variables.tf file and set the following details for “Stage 2”:

o Datacenter ID
o CIDR for the internal LAN in the
e Apply “Terraform”:

None

# cd SHOME/@2-provision-infrastructure/
# terraform init

# terraform plan

# terraform apply

e The “Terraform” Apply step should print the following output:

None

IP: 10.7.200.xx",
IP: 10.7.200.xx",

compute-node-ips = [
“"Name: compute-0 |
“Name: compute-1 |

]

control-plane-ips = |
“Name: control-0 | IP: 10.7.200.xx",
“Name: control-1 | IP: 10.7.200.xx",
“Name: control-2 | IP: 10.7.200.xx",

]

nat-gateway-internal-ip = tolist(|
"10.7.200.1",

1)

6.4.3 Provision IONOS Cloud Network Load Balancer for OpenShift

The Managed Network Load Balancer (NLB) is a pre-configured IONOS Cloud VDC element
that provides connection-based layer 4 load balancing features and functionality.

To fulfill the OpenShift Load Balancing requirements outlined in Chapter 3.3.5, we are going to
deploy the NLB with Terraform in this step.

We can only configure the NLB forwarding rules once we have the “target” IP addresses of the
Control-Plane and Worker Nodes from the previous step.

e Create “Terraform” SHOME/03-configure-1b/main.tf with the following content:

39



None
# Configuring the provider for IONOS Cloud
terraform {
required_providers {
ionoscloud = {
source = "ionos-cloud/ionoscloud"
version = ">= 6.4.10"

# Setting LB IP locally
locals {
internal_lb_ip = cidrhost(var.internal_lan_cidr, 5)

# LoadBalancer for API and Ingress starts here
resource "ionoscloud_networkloadbalancer" "openshift" {

datacenter_id = var.datacenter_id
name = "Load Balancer for OpenShift API and Ingress"
listener_lan = var.public_lan_id
target_lan = var.internal_lan_id
ips = [var.external_lb_ip]
lb_private_ips = ["${local.internal_lb_ip}/23"]
}
# Configuration of IONOS Cloud Network Loadbalancer Forwarding rules
resource "ionoscloud_networkloadbalancer_forwardingrule" "api-ext" {
datacenter_id = var.datacenter_id
networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id
name = "api-ext"
algorithm = "ROUND_ROBIN"
protocol = "TCP"
listener_ip = var.external_lb_ip
listener_port = "6443"

health_check {
target_timeout = 30000
}

dynamic "targets" {
for_each = var.control-ips

content {
ip = targets.value
port = "6443"
weight = "1"

40



health_check {

check = true
check_interval = 10000
maintenance = false
}
}
}
}
resource "ionoscloud_networkloadbalancer_forwardingrule" "api-int" {
datacenter_id = var.datacenter_id
networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id
name = "api-int"
algorithm = "ROUND_ROBIN"
protocol = "TCP"
listener_ip = local.internal_lb_ip
listener_port = "6443"

health_check {
target_timeout = 30000

dynamic "targets" {
for_each = var.control-ips

content {
ip = targets.value
port = "6443"
weight = "1"
health_check {
check = true
check_interval = 10000
maintenance = false
}
}

resource "ionoscloud_networkloadbalancer_forwardingrule" "ignition-int" {
datacenter_id

var .datacenter_id
networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id

name = "ignition-int"
algorithm = "ROUND_ROBIN"
protocol = "TCP"

listener_ip = local.internal_lb_ip

listener_port = "22623"



health_check {
target_timeout = 30000
}

dynamic "targets" {
for_each = var.control-ips

content {
ip = targets.value
port = "22623"
weight = "1"
health_check {
check = true
check_interval = 10000
maintenance = false
}
}

resource "ionoscloud_networkloadbalancer_forwardingrule
datacenter_id = var.datacenter_id
networkloadbalancer_id

ingress80" {

ionoscloud_networkloadbalancer.openshift.id

name = "api”

algorithm = "SOURCE_IP"
protocol = "TCP"

listener_ip = var.external_lb_ip
listener_port = "80"

health_check {
target_timeout = 30000
}

dynamic "targets" {
for_each = var.compute-ips

content {
ip = targets.value
port = "80"
weight = "1"
health_check {
check = true
check_interval = 10000
maintenance = false
}
}



resource "ionoscloud_networkloadbalancer_forwardingrule" "ingress443" {
datacenter_id = var.datacenter_id
networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id
name = "api”

algorithm = "SOURCE_IP"
protocol = "TCP"

listener_ip = var.external_lb_ip
listener_port = "443"

health_check {
target_timeout = 30000
}

dynamic "targets" {
for_each = var.compute-ips

content {
ip = targets.value
port = "443"
weight = "1"
health_check {
check = true
check_interval = 10000
maintenance = false
}

e Create “Terraform” SHOME/03-configure-1b/outputs.tf with the following
content:

None
output "nlb-internal-ip" {
value = ionoscloud_networkloadbalancer.openshift.lb_private_ips
description = "IP address of the NLB in private/internal network, used for
api-int DNS entry"
}

e Create symbolic link to the variables. tf file created earlier:

43



None
# 1n -s SHOME/variables.tf SHOME/@3-configure-1b/variables.tf

e Editthe variables.tf file and set the following details for “Stage 3”:
o External Loadbalancer IP as reserved in IONOS Cloud IP Management
o Control-Plane Node IPs
o Computer Node IPs

e Apply “Terraform”:

None

# cd SHOME/@3-configure-1b/
# terraform init

# terraform plan

# terraform apply

e The “Terraform” Apply step should print the following output:

None

nlb-internal-ip = tolist(|
"10.7.200.5",

1)

6.4.4 Create DNS Domain or Subdomain

In OpenShift Container Platform, DNS configuration for the API Server, Application Wildcard
Ingress and the Nodes in the Cluster is required.

This deployment guide assumes that you have a DNS domain registered with your Registrar.
Within the DNS configuration at your Registrar, configure a subdomain which is using the “NS”
record type to point to the IONOS Cloud DNS Nameservers.

With IONOS Cloud Domain Name System (DNS), you can publish your domain names to the
global DNS. The feature is built around the concept of DNS zones and records that can be

managed through both the Cloud DNS API and the Data Center Designer (DCD).

To create a zone, follow these steps:

44



e Inthe DCD, go to Menu (left upper corner) > Network Services > Cloud DNS

= |ONOS

x

Virtual Data Centers > -

Expand your network connectivity and

accelerate the data flow in your infrastructure.
Al > 4 - + 8 @ =
Containers >
Databases > -5-

y MAT Gatewa’

Storage & Backup ? IP Management VPN Gateway ﬂ L 11 s
Observability >

Network Services p:

L ——
Data Analytics b . & E

. Cross Connect AP| Gateway
Security >

&% ﬂz
EA

Auto Scaling

nagement
“PLis

Target Groups

& ‘s

CDN Cloud DNS

e Click Create > Primary Zone in the Public Zones tab to open the Create Primary
Zone window.

e Enter the following details in the Create Primary Zone window:

o Enabled/Disabled: Set the status to either Enabled (Default) or Disabled.

o Name: Enter an appropriate name for your DNS zone, here

ocp.ionos.yourdomain.de

o Description (Optional): Enter an appropriate description for your DNS zone.

e Click Create Zone to create the DNS zone.

More detailed information about this step can be found in the IONOS Cloud documentation.

45


https://docs.ionos.com/cloud/network-services/cloud-dns/dcd-how-tos/manage-dns-zone

6.4.5 Create DNS records

As we are going to install a High Available OpenShift Container Platform Cluster (see Chapter
2.3), we need DNS records for three Control Plane Nodes and two Compute Nodes.
Additionally, we will need DNS records for the Kubernetes API and the Application Ingress

traffic.

To create DNS records in the DNS Zone we configured in the previous chapter:

In the DCD, go to Menu > Network Services > Cloud DNS > Public Zones tab

Select the appropriate zone in the DNS ZONES column to create records. Alternatively,
click Details & Records in the ACTIONS column.

Click Create Record in the Details & Records window.

Enter the following details in the Create Record window:
o Enabled/Disabled: Set it to Enabled (by default)

o Name: Enter an appropriate name for the DNS record, see the list below
o TTL: Enter an appropriate Time-To-Live (TTL) setting in seconds for your DNS

record. Leave the default value at 3600 seconds.

Type: Select record types: A
Content: Enter the appropriate IPv4 address; see the list below
Preview: Ensure that the details of the record to be created are accurate.

FQDN IPv4 Address
control-0.ocp.ionos.yourdomain.de 10.7.200.xx
control-1.ocp.ionos.yourdomain.de 10.7.200.xx
control-2.ocp.ionos.yourdomain.de 10.7.200.xx
compute-0.ocp.ionos.yourdomain.de 10.7.200.xx
compute-1.ocp.ionos.yourdomain.de 10.7.200.xx
api-int.ocp.ionos.yourdomain.de 10.7.200.5 (internal Load-Balancer IP)

api.ocp.ionos.yourdomain.de

Public Load-Balancer IP from Chapter 4.4

*.apps.ocp.ionos.yourdomain.de

Public Load-Balancer IP from Chapter 4.4

More details about IONOS Cloud-DNS and DNS record management can be found in the

IONOS Cloud documentation.

Note:

Copy and paste the nameservers of the new created zone to configure the domain at your
Registrar. New DNS zones are currently not automatically registered.

46


https://docs.ionos.com/cloud/network-services/cloud-dns/dcd-how-tos/manage-dns-record

6.4.6 Set the Availability Zone for the Dedicated Core Servers in DCD

The previous step created all the needed VMs within the IONOS Cloud VDC. From an high
availability perspective, it's important to distribute the VMs into different zones.

The IONOS Cloud Region “Frankfurt am Main” (de/fra/2) we are using within this Deployment
Guide has two Availability Zones (AZ) called “Zone_1" and “Zone_2”. By default, the IONOS
Cloud VMs created previously are configured with zone “Auto”.

To improve reliability and to configure OpenShift Container Platform zone awareness in a later
step, it's recommended to distribute the VMs between those two available zones manually.
Please login to the IONOS Cloud Data Center Designer (DCD) as described in Chapter 4.1 and
check with the IONOS Cloud documentation about how to configure a specific availability zone
for every VM.

Remember to “Provision Changes” and note down the VM / AZ placement.

6.4.7 Create the Agent-based Installer ISO image

e Login to the “Management” VM, as described in Chapter 6.3.1 in more detail.
e Create directories to store and backup the configuration files:

None
# mkdir SHOME/ocp-install $HOME/install-backup

e Createthe install-config.yaml file by running the following command:

None
# cat << EOF > SHOME/ocp-install/install-config.yaml
apiVersion: vi
baseDomain: ionos.yourdomain.de
compute:
- architecture: amdé4
hyperthreading: Enabled
name: worker
replicas: 2
controlPlane:
architecture: amdé64
hyperthreading: Enabled
name: master
replicas: 3
metadata:
name: ocp

47


https://docs.ionos.com/cloud/compute-services/compute-engine/compute-engine-faq#how-do-i-change-the-availability-zone-1

networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.7.200.0/23 S Prrrrrnd
networkType: OVNKubernetes
serviceNetwork:
- 172.30.0.0/16
platform:
external:
platformName: IONOS
sshKey: 'SSH pub key' SSSESEE e B L L L L L e L L Lt rrrrrrrrrrrrrrrrnd
pullSecret: 'your Red Hat Pull Secret' <<<<<------------- rrrrrrrrrrrrrrrrnd
EOF

e FEditthe install-config.yamnl file:
o Change the sshkey with the SSH Public Key you prepared in Chapter 3.5.2
named “ocp-admin”
o Change the pullsecret with your Red Hat Pull Secret obtained within Chapter

3.5.1
o Change the machineNetwork CIDR to your internal network address, see

Chapter 6.3.1

e Create the agent-config.yaml file by running the following command:

None
# cat << EOF > SHOME/ocp-install/agent-config.yaml
apiVersion: vibetal
kind: AgentConfig
metadata:
name: OCP <<<<<-—-——-----———-- it cluster id configured in the DNS
# All fields are optional
rendezvousIP: (replace with IP of control-6 VM, i.e. 10.7.200.12)
bootArtifactsBaseURL: (replace with internal IP of Management VM, i.e.
http://10.7.200.11)
hosts:
- hostname: control-0
role: master
interfaces:
- macAddress: 02:01:e1:40:fe:50

48



name: ens6
networkConfig:
interfaces:
- name: ens6

type: ethernet

state: up

mac-address: 02:01:e1:40:fe:50

ipvé4:
enabled: true
dhcp: false
address:

- ip: 10.7.200.12
prefix-length: 23
dns-resolver:
config:
server:
- 212.227.123.16
- 212.227.123.17
routes:
config:

- destination: 0.0.0.0/0
next-hop-address: 10.7.220.1
next-hop-interface: ensé6
table-id: 254

- hostname: control-1
role: master
interfaces:
- macAddress: 02:01:e1:40:fe:51
name: ens6
networkConfig:
interfaces:
- name: ens6

type: ethernet

state: up

mac-address: 02:01:e1:40:fe:51

ipvé4:
enabled: true
dhcp: false
address:

- ip: 10.7.200.13
prefix-length: 23
dns-resolver:
config:
server:

49



- 212.227.123.16
- 212.227.123.17
routes:
config:

- destination: 0.0.0.0/0
next-hop-address: 10.7.200.1
next-hop-interface: ens6
table-id: 254

- hostname: control-2
role: master
interfaces:
- macAddress: 02:01:e1:40:fe:52
name: ens6
networkConfig:
interfaces:
- name: ens6

type: ethernet

state: up

mac-address: 02:01:e1:40:fe:52

ipvé4:
enabled: true
dhcp: false
address:

- ip: 10.7.200.14
prefix-length: 23
dns-resolver:
config:
server:
- 212.227.123.16
- 212.227.123.17
routes:
config:

- destination: 0.0.0.0/0
next-hop-address: 10.7.200.1
next-hop-interface: ens6
table-id: 254

- hostname: compute-0
role: worker
interfaces:
- macAddress: 02:01:e1:50:fe:50
name: ens6
networkConfig:
interfaces:
- name: ens6

50



type: ethernet

state: up

mac-address: 02:01:e1:50:fe:50

ipvé4:
enabled: true
dhcp: false
address:

- ip: 10.7.200.15
prefix-length: 23
dns-resolver:
config:
server:
- 212.227.123.16
- 212.227.123.17
routes:
config:

- destination: 0.0.0.0/0
next-hop-address: 10.7.200.1
next-hop-interface: ens6
table-id: 254

- hostname: compute-1
role: worker
interfaces:
- macAddress: 02:01:e1:50:fe:51
name: ens6
networkConfig:
interfaces:
- name: ens6

type: ethernet

state: up

mac-address: 02:01:e1:50:fe:51

ipvé4:
enabled: true
dhcp: false
address:

- ip: 10.7.200.16
prefix-length: 23
dns-resolver:
config:
server:
- 212.227.123.16
- 212.227.123.17
routes:
config:

51



- destination: 0.0.0.0/0
next-hop-address: 10.7.200.1
next-hop-interface: ens6
table-id: 254

EOF

e Important notes:

o we are using exactly the same mac-addresses as in Terraform when creating
the VMs in order, so we know which VM has which MAC address on the interface

o For every host defined in the AgentConfig file, we are setting a static IP
configuration: IP address to the same the IONOS Cloud DHCP gave back in
Chapter 6.4.2, setting DNS IP addresses to the 1&1 resolvers, setting the default
route to the internal IP address of the IONOS Cloud NAT Gateway configured
earlier.

o rendezvousIP to one of the Control Plane Nodes IPs

o DbootArtifactsBaseURL to the Apache Http Server running on the
“‘Management” VM and later providing the Red Hat CoreOS rootfs-image

e Prepare additional OpenShift Manifests to be included in the installation

At the point of writing this Deployment Guide, OpenShift Container Platform is not
correctly enabling the SystemD nodeip-configuration.service after the
installation. This will lead to a missing “node-ip” configuration file for the Kubelet.
A reasonable workaround is to provide a custom MachineConfig file to the
openshift-installer:

None
# mkdir SHOME/ocp-install/openshift
# cat << EOF >
SHOME /ocp-install/openshift/99-enable-nodeip-custom-config-master.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 99-enable-nodeip-custom-config-master
spec:
config:
ignition:
version: 3.4.0

52


https://docs.ionos.com/cloud/network-services/vdc-networking/networks-faq#do-you-have-a-dns-resolver

systemd:
units:
- name: nodeip-configuration.service
enabled: true
EOF

# cat << EOF >
SHOME /ocp-install/openshift/99-enable-nodeip-custom-config-worker.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:

labels:

machineconfiguration.openshift.io/role: worker
name: 99-enable-nodeip-custom-config-worker

spec:
config:
ignition:
version: 3.4.0
systemd:
units:
- name: nodeip-configuration.service
enabled: true
EOF

e Asthe openshift-install tooling is “consuming” the configuration files, it is
recommended to back them up:

None
# cp SHOME/ocp-install/*-config.yaml SHOME/install-backup/

e Create the agent image by running the following command:

None

# openshift-install --dir $HOME/ocp-install agent create image
INFO Configuration has 3 master replicas and 2 worker replicas
INFO The rendezvous host IP (node®@ IP) is 10.7.220.12

INFO Extracting base ISO from release payload

INFO Verifying cached file

53



INFO Using cached Base ISO /root/.cache/agent/image_cache/coreos-x86_64.1iso
INFO Consuming Extra Manifests from target directory

INFO Consuming Agent Config from target directory

INFO Consuming Install Config from target directory

INFO RootFS file created in: boot-artifacts. Upload it at
http://10.7.200.11/agent.x86_64-rootfs.img

INFO Generated minimal ISO at agent.x86_64.iso

INFO When using External oci platform, always make sure CCM manifests were
added in the openshift directory.

e Inspecting the $HOME/ocp-install directory, we can see the following files:

None
# tree -h

F— [ 115M] agent.x86_64.iso
— [ 50] auth
| — [ 23] kubeadmin-password
| L— [ 8.7K] kubeconfig
[ 37] boot-artifacts
| L— [ 1.1G] agent.x86_64-rootfs.img
L— | 11] rendezvousIP

2 directories, 5 files

e The “agent.x86 64.1is0” file now contains the bootable image we will use to
provision the VMs prepared previously with “Terraform”.
To have the ISO image available for provisioning, we need to upload the ISO image to
the appropriate IONOS Cloud data center via FTPS.
As we are installing in the “Germany/Frankfurt am Main” data center, you need to use
the following location: ftps://ftp-fra-2.ionos.com/hdd-images
More details about uploading can be found in the IONOS Cloud documentation.

e After the upload finished, set the vertical scaling flags like Scale CPU, Scale RAM to Hot
Plug, Hotplug VirtlO to Hot Plug and Unplug and UEFI compatibility in the Manage
Images and Snapshots window for that agent ISO image.

54


ftp://ftp-txl.ionos.com/iso-images

Live Vertical Scaling

Scale CPU Scale RAM

Hot Flug - Hot Plug -
Hotplug NICs Hotplug VirtlO

Hot Plug and Unplug - Hot Plug and Unplug -
UEFI Suppart

Image is UEFl-compatible -

e The agent.x86 64-rootfs.imginthe boot-artifacts directory contains the
Red Hat CoreOS rootfs image, which is pulled by the init-ramdisk contained in the
agent.x86_ 64.1isoimage.

As the IONOS Cloud DHCP is not setting a default gateway nor DNS nameserver IPs for
private networks, we need to have the rootfs image available within the private network.
For this reason, we already installed and enabled the Apache Http Server in Chapter
6.34.

Please copy the root-fs image to the webservers serving directory:

None
# cp SHOME/ocp-install/boot-artifacts/agent.x86_64-rootfs.img /var/www/html/

6.4.8 Attach “Minimal ISO” as CDROM drive and set boot order

During Chapter 6.4.2, we provisioned IONOS Cloud Dedicated Core Servers with “empty” SSD
disk drives. At this point, we couldn’t attach a CD-ROM drive for booting because the ISO Image
for the Agent-based OpenShift Container Platform installation did not exist yet.

As we now have the ISO boot image (agent .x86 64 .1iso) prepared and uploaded to the
IONOS Cloud FTPS server, we can configure a CD-ROM device.

The Deployment Guide is currently missing a “Terraform” automation for this part, so we are
using the Data Center Designer (DCD) at this stage once again:

e Inthe DCD, select one of the OpenShift VMs in your datacenter

55



Navigate to the Inspector pane on the right side and select the Storage tab

Click Add CD-ROM and select the agent .x86 64 .1iso image from your own images
Uncheck the “Boot from Device” checkbox
Set the already existing SSD device (named i.e. control-1-storage) as Boot Device
Repeat the same for all OpenShift VMs

As described in the Agent-based Installer Workflow (see Chapter 6.1.3), this boot device
settings helps to eliminate the need to change the boot order or remove the CD-ROM device
after the Red Hat CoreOS image is written to disk and the VM is automatically rebooted for the

second phase of the installation.

Press Provision Changes in the DCD to reboot all OpenShift VMs with the Minimal ISO image

and to start the OpenShift deployment.

6.4.9 Monitor the OpenShift Container Platform Installation progress

With the previous step in rebooting the IONOS Cloud Dedicated Core Server VMs, the Minimal
ISO will be booted and the OpenShift Container Platform installation will start.

To monitor the installation progress, run the following commands and monitor the output on the

“Management” Server:

e Monitoring the first part of the installation:

None

# openshift-install agent wait-for bootstrap-complete --log-level info

INFO Waiting for cluster install to initialize. Sleeping for 30 seconds
INFO Cluster is not ready for install. Check validations
WARNING Cluster validation: The cluster has hosts that are not ready to

install.

INFO Cluster is ready for install
INFO Cluster validation: All hosts in the cluster are

INFO Host control-1 validation:
in the cluster
INFO Host control-0 validation:
in the cluster
INFO Host control-2 validation:
in the cluster
INFO Host compute-3 validation:
in the cluster
INFO Host compute-0 validation:
in the cluster
INFO Host compute-1 validation:
in the cluster

Host

Host

Host

Host

Host

Host

has

has

has

has

has

has

connectivity

connectivity

connectivity

connectivity

connectivity

connectivity

ready to install.
to the majority of

to the

to the

to the

to the

to the

majority

majority

majority

majority

majority

of

of

of

of

of

hosts

hosts

hosts

hosts

hosts

hosts

56



INFO Host compute-2 validation: Host has connectivity to the majority of hosts
in the cluster

INFO Host control-2: updated status from insufficient to known (Host is ready
to be installed)

INFO Preparing cluster for installation

INFO Cluster installation in progress

INFO Host control-1: updated status from preparing-successful to installing
(Installation is in progress)

INFO Host: control-8, reached installation stage Writing image to disk: 39%
INFO Host: compute-8, reached installation stage Writing image to disk: 75%
INFO Host: compute-8, reached installation stage Writing image to disk: 100%
INFO Host: compute-0, reached installation stage Waiting for control plane
INFO Bootstrap Kube API Initialized

INFO Host: compute-2, reached installation stage Rebooting

INFO Host: compute-3, reached installation stage Rebooting

INFO Host: compute-0, reached installation stage Rebooting

INFO Host: control-0, reached installation stage Waiting for bootkube: waiting
for ETCD bootstrap to be complete

INFO Host: compute-3, reached installation stage Joined

INFO Bootstrap configMap status is complete

INFO Bootstrap is complete

INFO cluster bootstrap is complete

#

e Once the Cluster bootstrap is complete, the command exits and we can monitor the
installation process to complete:

None

# openshift-install agent wait-for install-complete --log-level info
INFO Bootstrap Kube API Initialized

INFO Bootstrap configMap status is complete

INFO Bootstrap is complete

INFO cluster bootstrap is complete

INFO Cluster is installed

INFO Install complete!

INFO To access the cluster as the system:admin user when using 'oc', run
INFO export KUBECONFIG=/root/ocp-install/auth/kubeconfig

INFO Access the OpenShift web-console here:
https://console-openshift-console.apps.ocp.ionos.yourdomain.de

INFO Login to the console with user: "kubeadmin", and password:
"XXXX = XX XXX = XX XXX = XXXXX "

57



At this point OpenShift Container Platform is successfully installed on IONOS
Cloud.

6.4.10 Post-install configuration

In a previous step (see Chapter 6.4.6) we distributed the OpenShift Container Platform Nodes to
different Availibility Zones (AZ) in the IONOS Cloud datacenter location.

However, OpenShift Container Platfom can not detect the zone location of the individual Nodes,
as the VMs are not exposing this and we currently have no deeper integration into the IONOS
Cloud to check for metadata.

To add scheduling and high-availability awareness to OpenShift Container Platform, please use
the following command to set the AZ accordingly:

None

# oc label node control-0 topology.kubernetes.io/zone=ZONE_1
oc label node control-1 topology.kubernetes.io/zone=Z0ONE_2
oc label node control-2 topology.kubernetes.io/zone=ZONE_1
oc label node compute-0 topology.kubernetes.io/zone=ZONE_1
oc label node compute-1 topology.kubernetes.io/zone=Z0ONE_2

H o H B

58



[/ Day 2 operations

7.1 Configure persistent storage

To use Block Storage volumes with OpenShift Container Platform, we need to provision and
configure the [IONOS Cloud Blockstorage CSI driver version >= 0.6.0.

This Container Storage Interface (CSI) driver plugin communicates with the IONOS Cloud API
to manage storage. The visibility and permissions it has depend on the authentication token it is
given.

7.1.1 Prerequisites
e Helm 3+ available
e |ONOS Cloud API Token
o Please review Chapter 4.2 about how to create IONOS Cloud API tokens. It is
recommended creating a dedicated token for the CSI driver, potentially using a
higher TTL as otherwise we need to change the token frequently

7.1.2 Create a secret with the IONOS Cloud API Token for the CSI driver
The secret needs to be named csi-secret and the key needs to be named token:

None

S oc -n kube-system create secret generic csi-secret --from-literal
token=<your-token>

7.1.3 Create IONOS Cloud CSI Node Server config file on all Nodes
The CSI node server expects the file /etc/ie-csi/cfg.json to exist on every VM. The file
must contain the datacenter ID of the VM in the following format:

None
{"datacenter-id": "<DATACENTER_ID>"}

Use base64 to encode the above string and insert it in the MachineConfig manifests for
OpensShift Container Platform Worker Nodes:

None

$ cat 99-ionos-csi-config-worker.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig

59


https://github.com/ionos-cloud/ionoscloud-blockstorage-csi-driver

metadata:
name: 99-ionos-csi-config-worker
labels:
machineconfiguration.openshift.io/role: worker
spec:
config:
ignition:
version: 3.4.0
storage:
files:
- path: /etc/ie-csi/cfg.json
mode: 0644
contents:
source:
data:text/plain;charset=utf-8;base64, replace-me-with-BASE64-encoded-string

Apply the MachineConfig:

None

S oc apply -f 99-ionos-csi-config-worker.yaml

Once the Machine Config Pools are ready again, deploy the IONOS Cloud CSI driver with helm:

None

$ helm install -n kube-system ionoscloud-blockstorage-csi-driver \
oci://ghcr.io/ionos-cloud/helm-charts/ionoscloud-blockstorage-csi-driver \
--set tokenSecretName=csi-secret --set init.selinux.enabled=true

7.2 Configuring Certificates for Ingress and API

7.2.1 Replacing the default Ingress Certificate

Applications are usually exposed at

<route name>.apps.<cluster name>.<base domain>.The <cluster name> and
<base_ domain> come from the installation config file. <route name> is the host field of the
route, if specified, or the route name. For example,

60



hello-openshift-default.apps.username.devcluster.openshift.com.
hello-openshift is the name of the route and the route is in the default namespace.
You might want clients to access the applications without the need to distribute the
cluster-managed CA certificates to the clients. The administrator must set a custom default
certificate when serving application content.

By default, OpenShift Container Platform uses the Ingress Operator to create an internal CA
and issue a wildcard certificate that is valid for applications under the .apps sub-domain. Both

the web console and CLI use this certificate as well.

The internal infrastructure CA certificates are self-signed. While this process might be perceived
as bad practice by some security or PKI teams, any risk here is minimal. The only clients that
implicitly trust these certificates are other components within the cluster. Replacing the default
wildcard certificate with one that is issued by a public CA already included in the CA bundle as
provided by the container userspace allows external clients to connect securely to applications
running under the .apps sub-domain.

To replace the default ingress certificate for all applications under the . apps subdomain, please
follow the detailed steps and prerequisites outlined in the OpenShift Container Platform
documentation.

If not already specified during the initial OpenShift Container Platform installation, please
remember to also update the custom Certificate Authority (CA) to the “CA Bundle”. Fore more
details, check the OpenShift Container Platform documentation

7.2.2 Replacing the default API Server Certificate

The API server is accessible by clients external to the cluster at
api.<cluster name>.<base domain>. You might want clients to access the API server at

a different hostname or without the need to distribute the cluster-managed certificate authority
(CA) certificates to the clients.

The default API server certificate is issued by an internal OpenShift Container Platform cluster
CA. Clients outside of the cluster will not be able to verify the API server’s certificate by default.
This certificate can be replaced by one that is issued by a CA that clients trust.

The user-provided certificates must be provided in a kubernetes.io/tls type Secret in
the openshift-config namespace. Update the API server cluster configuration, the
apiserver/cluster resource, to enable the use of the user-provided certificate.

To replace the default API Server certificate, please follow the detailed steps and prerequisites
outlined in the OpenShift Container Platform documentation.

61


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/networking/index#nw-ingress-setting-a-custom-default-certificate_configuring-ingress
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/security_and_compliance/index#updating-ca-bundle
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/security_and_compliance/index#customize-certificates-api-add-named_api-server-certificates

7.3 Configure OpenShift Image Registry

OpenShift Container Platform can build images from your source code, deploy them, and
manage their lifecycle. It provides an internal, integrated container image registry that can be
deployed in your OpenShift Container Platform environment to locally manage images.

Due to the fact that we are using “Platform: External” for the OpenShift Container
Platform installation, there is no default integration with the specific storage offerings on IONOS
Cloud.

For this reason, the OpenShift Image Registry Operator bootstraps itself as Removed, which
means that there is no OpenShift internal Image Registry configured at all.

A scaled OpenShift image registry involves running multiple replicas of the registry to improve
performance, reliability, and availability.

By scaling the OpenShift image registry, you can ensure that your cluster can efficiently manage
and distribute container images, supporting large-scale deployments and improving overall
system reliability.

According to the recommendations for the Registry storage in the documentation, it is needed to
use object storage for the scaled OpenShift Image Registry. Please refer to Chapter 3.2.4 to
learn more about IONOS Cloud Object Storage.

The OpenShift Container Platform documentation includes a detailed description about how to
configure and set up the OpenShift Image Registry, please follow the steps in the Chapter
“Configuring the reqistry for bare metal”.

To set up and create an object storage bucket on IONOS Cloud, please follow the steps outlined
in the JONOS Cloud documentation.

After creating the IONOS Cloud Object Storage bucket, you need to create an Object Storage
Key as outlined in the IONOS Cloud documentation.

Once we have the “Access Key” and the “Secret Key”, we are going to create the needed
OpensShift Secret in the openshift-image-registry hamespace:

None

S oc create secret generic image-registry-private-configuration-user
--from-literal=REGISTRY_STORAGE_S3_ACCESSKEY=your-key-here \
--from-literal=REGISTRY_STORAGE_S3_SECRETKEY=your-key-here \
--namespace openshift-image-registry

62


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#recommended-configurable-storage-technology-scaled-registry_persistent-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/registry/index#configuring-registry-storage-baremetal
https://docs.ionos.com/cloud/storage-and-backup/ionos-object-storage/get-started/create-bucket
https://docs.ionos.com/cloud/storage-and-backup/ionos-object-storage/get-started/generate-key

Now we need to change the OpenShift Image Registry configuration by editing with oc edit:

None

S oc edit config.imageregistry.operator.openshift.io
Example Manifest, change spec.managementState, spec.replicas and spec.storage:

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
name: cluster
spec:
logLevel: Normal
managementState: Managed
operatorLoglLevel: Normal
proxy: {}
replicas: 2
rolloutStrategy: RollingUpdate
storage:
SSK
bucket: openshift-registry
region: eu-central-3
regionEndpoint: https://s3.eu-central-3.ionoscloud.com
unsupportedConfigOverrides: null

7.4 Configure OpenShift Monitoring

When configuring OpenShift monitoring, using persistent storage is highly recommended.
Persistent storage ensures that your metrics and alerting data are protected from loss when
pods are restarted or recreated. This is crucial for maintaining historical data and ensuring
continuity in monitoring and alerting systems.

To implement persistent storage, you need to configure Persistent Volume Claims (PVCs) for
monitoring components and ensure sufficient local storage is available.

OpenShift Container Platform Monitoring is using Prometheus databases for storing metrics and
alerts. The recommended storage technology for Prometheus is block storage.

Within the OpenShift Container Platform documentation, you will find some numbers regarding
the required storage capacity for different Cluster sizes. Keep in mind that by default,
Prometheus retains metrics for 15 days. You can modify the retention time for the Prometheus
instance to change when the data is deleted. You can also set the maximum amount of disk

63


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#recommended-configurable-storage-technology_persistent-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#prometheus-database-storage-requirements_recommended-infrastructure-practices

space the retained metrics data uses. More details about modifying retention time and size is
available in the documentation as well.

The main steps to configure persistent storage for OpenShift Container Platform Monitoring are:

e Edit ConfigMap:
o Modify cluster-monitoring-configinthe openshift-monitoring
namespace.
e Add PVC Configuration:
o Specify volumeClaimTemplate for each component (e.g., Prometheus,
Alertmanager) with storage class and size.
e Ensure PVs Are Available:
o Have sufficient PVs for each replica.
e Verify Configuration:
o Check that pods use the specified storage after applying changes.

Please refer to the OpenShift Container Platform documentation for detailed instructions.

7.5 Scaling the OpenShift Cluster

OpenShift Container Platform is a highly scalable solution and Red Hat is publishing some
numbers about the tested Cluster maximums in the documentation.

However, the environment, application workload and infrastructure are never the same and it’s
hard to compare with any general numbers. Scaling up, preparing for more workload and
keeping a decent end-customer performance needs proper planning and testing.

The OpenShift Container Platform documentation provides a whole chapter about “Scalability
and performance”, covering a broad number of different topics. It is recommended to get familiar
with those topics already in the planning and design phase.

As a general guidance, it is very important to keep the Control Plane Node size inline with the
overall Cluster growth. The node sizing varies depending on the number of Worker Nodes and
object counts in the cluster. It also depends on whether the objects are actively being created on
the cluster. The “Control Plane Node sizing” chapter in the documentation has some numbers.

7.5.1 Adding Worker Nodes to the Cluster

Starting with OpenShift Container Platform 4.17, you can add Worker Nodes by using the oc
adm node-image command to generate an ISO image, which can then be used to boot one or
more nodes in your target cluster.

64


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/monitoring/index#modifying-retention-time-and-size-for-prometheus-metrics-data_storing-and-recording-data
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/monitoring/index#configuring-persistent-storage_storing-and-recording-data
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#cluster-maximums-major-releases_object-limits
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#master-node-sizing_recommended-control-plane-practices

With this platform-agnostic approach, you can add one or more Nodes at a time while
customizing each Node with more complex configurations, such as static network configuration.
Any required configurations that are not specified during ISO generation are retrieved from the
target cluster and applied to the new nodes.

Preflight validation checks are also performed when booting the ISO image to inform you of
failure-causing issues before you attempt to boot each node.

Before running the oc adm node-image create command to generate the ISO image suitable for
your OpenShift Container Platform Cluster, you need to prepare the VMs on IONOS Cloud.
Please refer to Chaper 6.4 about how to create the VM instances.

The detailed steps needed to create the ISO image for one or more Nodes is outlined in the
OpenShift Container Platform documentation.

7.6 OpenShift Container Platform updates

7.6.1 Understanding OpenShift updates

OpenShift Container Platform updates are managed through the Cluster Version Operator
(CVO) and the OpenShift Update Service (OSUS).

The OSUS provides a graph of update possibilities based on release images, ensuring
compatibility and safety. When an update is requested, the CVO retrieves the target release
image and applies changes to the cluster.

The Machine Config Operator (MCO) handles node updates by cordoning nodes, applying
new configurations, and rebooting them. Updates are typically rolled out in stages, and only
upgrading to newer versions is supported. The OSUS continuously checks for available updates
and notifies administrators when new versions are ready.

More details about OpenShift Container Platform updates as well as a collection of frequently
asked questions can be found in the documentation.

Attention:
Before updating the OpenShift Cluster to any new z-stream or minor release, it is highly

recommended to check the OpenShift Container Release Notes for the appropriate release and

to work through the “Preparing to update a cluster” chapter in the documentation.

7.6.2 Updating to the next OpenShift z-stream maintenance release

To update OpenShift Container Platform to the latest z-stream release (i.e. 4.17.1 t0 4.17.3)
using the command line, follow these steps:

e Install the Correct CLI Version: Ensure you have the OpenShift CLI (oc) version that
matches your target update version.

65


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/nodes/index#adding-node-iso
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/updating_clusters/index#understanding-openshift-updates
https://docs.redhat.com/documentation/openshift_container_platform/latest/html-single/release_notes/index
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/updating_clusters/index#preparing-to-update-a-cluster

e Log In with Admin Privileges: Log in to the cluster as a user with cluster-admin
privileges.

e Pause Machine Health Checks: Pause all MachineHealthCheck resources to
prevent interference during the update.

e Check Available Updates: Use oc adm upgrade to view available updates and note
the desired version.

e Apply the Update: Use oc adm upgrade --to-latest=true to update to the
latest version or specify a version with --to <version>.

e Monitor the Update: Use oc get clusterversion and oc get nodes to monitor
the update progress until it completes. You can also use oc adm upgrade for
monitoring.

More details about the procedure can be found in the OpenShift Container Platform
documentation.

7.6.3 Upgrading to the next OpenShift minor release

Important:

When updating to a new OpenShift minor release (i.e. from 4.17 to 4.18), it is especially
important to review and check the OpenShift Container Release Notes for the appropriate
release. Consult the “Notable technical changes” and “Deprecated and removed features”
sections carefully for the particular release.!

To update OpenShift Container Platform to a more recent minor release (i.e. 4.17.20 to 4.18.5)
using the command line, follow these steps:

e Install the Correct CLI Version: Ensure you have the OpenShift CLI (oc) version that
matches your target update version.

e Log In with Admin Privileges: Log in to the cluster as a user with cluster-admin
privileges.

e Pause Machine Health Checks: Pause all MachineHealthCheck resources to
prevent interference during the update.

e Set the appropriate update channel:
Use oc adm upgrade channel stable-4.18 to setthe “stable-4.18” channel

e Check Available Updates: Use oc adm upgrade to view available updates and note
the desired version.

e Apply the Update: Use oc adm upgrade --to-latest=true to update to the
latest version or specify a version with --to <version>.

e Monitor the Update: Use oc get clusterversion and oc get nodes to monitor
the update progress until it completes. You can also use oc adm upgrade for
monitoring.

66


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/updating_clusters/index#update-upgrading-cli_updating-cluster-cli
https://docs.redhat.com/documentation/openshift_container_platform/latest/html-single/release_notes/index
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/release_notes/index#ocp-4-18-notable-technical-changes_release-notes
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/release_notes/index#ocp-4-18-deprecated-removed-features_release-notes

More details about the procedure can be found in the OpenShift Container Platform
documentation.

67


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/updating_clusters/index#update-upgrading-cli_updating-cluster-cli

8 Troubleshooting and Support

8.1 Gathering log data from a failed Agent-based installation

To gather log data about a failed Agent-based installation and to provide that for a support case,
please refer to the OpenShift Container Platform documentation.

8.2 General OpenShift Container Platform Troubleshooting

The OpenShift Container Platform documentation includes a whole chapter about
troubleshooting in different areas. Please consult the documentation to get started.

68


https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/installing-with-agent-basic#installing-ocp-agent-gather-log_installing-with-agent-basic
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/support/index#troubleshooting
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/support/index#troubleshooting

	Red Hat OpenShift Container Platform 4.17 on IONOS Cloud: 
	Deployment Guide 
	 
	Table of Contents 
	1 Introduction 
	1.1 Purpose of the document 
	1.2 Introduction to IONOS Cloud 
	1.2.1 IONOS Cloud Compute Engine model  
	1.2.2 Data Center Designer 
	1.2.4 Virtual Data Center 

	1.3 Introduction to Red Hat OpenShift Container Platform 

	2 Red Hat OpenShift Container Platform installation details 
	2.1 Understanding OpenShift Container Platform Installation Method Differences 
	2.2 Understanding connected and disconnected environments 
	2.3 Understanding OpenShift Container Platform installation topologies  

	 
	3 IONOS Cloud Service and OpenShift Requirements 
	3.1 Description of relevant IONOS Cloud services 
	3.1.1 Compute (IONOS Cloud Dedicated Core Server) 
	3.1.2 Disk Storage (IONOS Cloud Block Storage) 
	3.1.3 Object Storage (IONOS Cloud Object Storage) 
	3.1.4 NAT Gateway (IONOS Cloud Managed NAT Gateway) 
	3.1.5 DNS (IONOS Cloud DNS) 
	3.1.6 LoadBalancer (IONOS Cloud Managed Network Load Balancer) 

	3.2 OpenShift Container Platform resource requirements on IONOS Cloud 
	3.2.1 Compute 
	3.2.2 Storage 
	3.2.3 NTP 
	3.2.4 DNS 
	3.2.5 Load Balancing 

	3.3 General prerequisites needed 
	3.3.1 Pull Secret from console.redhat.com 
	3.3.2 SSH-Key 
	3.3.3 Platform selection 


	 
	4 Prepare general resources for the IONOS Cloud 
	4.1 Log in to the IONOS Cloud Data Center Designer (DCD) 
	4.2 Generate authentication token 
	4.3 Adding SSH Key 
	4.4 Reserve public IPv4 addresses 

	5. Architectural overview 
	 
	6 Deploy Openshift Container Platform with the  Agent-based Installer on IONOS Cloud 
	6.1 General description 
	6.1.1 About the Agent-based Installer 
	6.1.2 Understanding the Agent-based Installer 
	6.1.3 Agent-based Installer Workflow 

	6.2 Check Prerequisites 
	6.3 Create the IONOS Cloud VDC and the Management Server 
	6.3.1 Running Terraform locally to create initial IONOS Cloud resources 
	6.3.2 Preparing the “Management” virtual machine 
	6.3.3 Connecting to the “Management” virtual machine 
	6.3.4 Installing required software 

	6.4 Install a Highly Available OpenShift Container Platform Cluster 
	6.4.1 Prepare the “Terraform” working directories on the “Management” server 
	6.4.2 Provision IONOS Cloud Dedicated Core Servers and IONOS Cloud NAT Gateway 
	6.4.3 Provision IONOS Cloud Network Load Balancer for OpenShift 
	6.4.4 Create DNS Domain or Subdomain 
	6.4.5 Create DNS records 
	6.4.6 Set the Availability Zone for the Dedicated Core Servers in DCD 
	6.4.7 Create the Agent-based Installer ISO image 
	6.4.8 Attach “Minimal ISO” as CDROM drive and set boot order 
	6.4.9 Monitor the OpenShift Container Platform Installation progress 
	6.4.10 Post-install configuration 


	 
	7 Day 2 operations 
	7.1 Configure persistent storage 
	7.2 Configuring Certificates for Ingress and API 
	7.2.1 Replacing the default Ingress Certificate 
	7.2.2 Replacing the default API Server Certificate 

	7.3 Configure OpenShift Image Registry 
	7.4 Configure OpenShift Monitoring 
	7.5 Scaling the OpenShift Cluster 
	7.5.1 Adding Worker Nodes to the Cluster 

	7.6 OpenShift Container Platform updates 
	7.6.1 Understanding OpenShift updates 
	7.6.2 Updating to the next OpenShift z-stream maintenance release 
	7.6.3 Upgrading to the next OpenShift minor release 


	 
	8 Troubleshooting and Support 
	8.1 Gathering log data from a failed Agent-based installation  
	8.2 General OpenShift Container Platform Troubleshooting 


