
 

 
 
 

 
 
 
 

Red Hat OpenShift Container Platform 
4.17 on IONOS Cloud: 
Deployment Guide 
Version 1.2, January 19th 2026 
 

 

 



 

Table of Contents 
 
1 Introduction 

1.1 Purpose of the document 
1.2 Introduction to IONOS Cloud 

1.2.1 IONOS Cloud Compute Engine model 
1.2.2 Data Center Designer 
1.2.4 Virtual Data Center 

1.3 Introduction to Red Hat OpenShift Container Platform 
2 Red Hat OpenShift Container Platform installation details 

2.1 Understanding OpenShift Container Platform Installation Method Differences 
2.2 Understanding connected and disconnected environments 
2.3 Understanding OpenShift Container Platform installation topologies 

3 IONOS Service and OpenShift Requirements 
3.1 Description of relevant IONOS services 

3.1.1 Compute (IONOS Dedicated Core Server) 
3.1.2 Disk Storage (IONOS Cloud Block Storage) 
3.1.3 Object Storage (IONOS Object Storage) 
3.1.4 NAT Gateway (IONOS Managed NAT Gateway) 
3.1.5 DNS (IONOS Cloud DNS) 
3.1.6 LoadBalancer (IONOS Managed Network Load Balancer) 

3.2 OpenShift Container Platform resource requirements on IONOS 
3.2.1 Compute 
3.2.2 Storage 
3.2.3 NTP 
3.2.4 DNS 
3.2.5 Load Balancing 

3.3 General prerequisites needed 
3.3.1 Pull Secret 
3.3.2 SSH-Key 
3.3.3 Platform selection 

4 Prepare general resources for the IONOS Cloud 
4.1 Log in to the IONOS Data Center Designer (DCD) 
4.2 Generate authentication token 
4.3 Adding SSH Key 
4.4 Reserve public IPv4 addresses 

5. Architectural overview 
6 Deploy Openshift Container Platform with the  Agent-based Installer on IONOS Cloud 

6.1 General description 
6.1.1 About the Agent-based Installer 

1 



 

6.1.2 Understanding the Agent-based Installer 
6.1.3 Agent-based Installer Workflow 

6.2 Check Prerequisites 
6.3 Create the IONOS VDC and the Management Server 

6.3.1 Running Terraform locally to create initial IONOS resources 
6.3.2 Preparing the “Management” virtual machine 
6.3.3 Connecting to the “Management” virtual machine 
6.3.4 Installing required software 

6.4 Install a Highly Available OpenShift Container Platform Cluster 
6.4.1 Prepare the “Terraform” working directories on the “Management” server 
6.4.2 Provision IONOS Dedicated Core Servers and IONOS NAT Gateway 
6.4.3 Provision IONOS Network Load Balancer for OpenShift 
6.4.4 Create DNS Domain or Subdomain 
6.4.5 Create DNS records 
6.4.6 Set the Availability Zone for the Dedicated Core Servers in DCD 
6.4.7 Create the Agent-based Installer ISO image 
6.4.8 Attach “Minimal ISO” as CDROM drive and set boot order 
6.4.9 Monitor the OpenShift Container Platform Installation progress 
6.4.10 Post-install configuration 

7 Day 2 operations 
7.1 Configure persistent storage 
7.2 Configuring Certificates for Ingress and API 

7.2.1 Replacing the default Ingress Certificate 
7.2.2 Replacing the default API Server Certificate 

7.3 Configure OpenShift Image Registry 
7.4 Configure OpenShift Monitoring 
7.5 Scaling the OpenShift Cluster 

7.5.1 Adding Worker Nodes to the Cluster 
7.6 OpenShift Container Platform updates 

7.6.1 Understanding OpenShift updates 
7.6.2 Updating to the next OpenShift z-stream maintenance release 
7.6.3 Upgrading to the next OpenShift minor release 

8 Troubleshooting and Support 
8.1 Gathering log data from a failed Agent-based installation 
8.2 General OpenShift Container Platform Troubleshooting 

 
 
 

 

2 



 

1 Introduction 

1.1 Purpose of the document 
Regardless if a customer's application landscape is about to be modernized or already consists 
of applications developed in a microservice architecture, organizations are looking for leading 
application platforms to build, deploy and operate their most critical business workload. 
 
Many organizations are looking for sovereign and local cloud environments as an alternative to 
global hyperscalers.  
 
Sovereign cloud usage is often driven by regulatory, security, and operational considerations.  
 

●​ Some of the key reasons are: 
○​ Data Compliance and Legal Requirements 
○​ Data Residency and Sovereignty 
○​ Security and Risk Mitigation 
○​ Independence from Foreign Cloud Providers 
○​ Digital Sovereignty and Strategic Autonomy 
○​ Economic and Innovation Benefits 
○​ Trust and Transparency 

 
As a leading sovereign cloud provider, IONOS is partnering with Red Hat to enable Red Hat 
OpenShift Container Platform deployment. 
The goal of this document is to describe a semi-automated deployment of OpenShift Container 
Platform on top of IONOS cloud.  
 
This comprehensive walkthrough for different installation scenarios will help to keep aligned with 
recommended practices for initial installation and also provides valuable insights for typical 
operational tasks in the “Day 2” section of the document. 
 
Within this deployment guide, a default OpenShift Container Platform High Availability Cluster 
(consisting of 3 Control-Plane Nodes and 2 Worker Nodes) will be described, as this is the bare 
minimum recommended for production environments. 
 
Please note that the deployment guide is partially focused on manual steps to deploy the 
OpenShift Container Platform Cluster on IONOS and does not describe a fully automated 
installation approach. 
Of course, further automation is possible and recommended (please check the IONOS API 
documentation for details) but it’s out of the scope of this document. 
 
This deployment guide was also used to validate the OpenShift Container Platform installation 
on IONOS, as referenced in the Red Hat Ecosystem catalog. 

3 

https://catalog.redhat.com/search?searchType=cloud&certified_RedHat_Platforms=Red%20Hat%20OpenShift


 

1.2 Introduction to IONOS Cloud 
IONOS Cloud offers its customers "Infrastructure as a Service" (IaaS) in the form of virtual 
computing, data storage, and network resources. The customer is able to make use of these 
resources on a flexible basis as required. The resources used (Cores/vCPUs, RAM, Storage) 
are billed to the customer by the minute based on a price list, which is valid at the time. Billing of 
external data transfers is based on data volume. 

1.2.1 IONOS Cloud Compute Engine model 

 

1.2.2 Data Center Designer 
IONOS Cloud provides the customer with access to a personalized web application called the 
“Data Center Designer” (DCD). The DCD can be accessed via modern Internet browsers. 
 
1.2.3 Cloud API​
IONOS Cloud provides the customer with an Application Programming Interface (API). This API 
gives the customer automated control over the functions from the DCD. Upon request, IONOS 
Cloud will provide an API reference along with example software (Cloud-CLI) on how the Cloud 
API can be used (links below). 

IONOS Cloud provides access to the Cloud functionality for developers based on REST (Representational​
State Transfer). All account types are able to use the Cloud API. 

 

Scope URL 
Cloud API Documentation https://api.ionos.com/docs/cloud/v6/ 
Cloud API Endpoint https://api.ionos.com/cloudapi/v6/ 

4 

https://api.ionos.com/docs/cloud/v6/
https://api.ionos.com/cloudapi/v6/


 

1.2.4 Virtual Data Center 
On the IONOS Cloud platform, the customer can create so-called “Virtual Data Centers” (VDC). 
A VDC is a repository for all infrastructure resources ordered by the customer. Access to the 
resources in a VDC – similar to operating a physical data center – is only possible via a 
corresponding network or internet connection. Within a VDC, the IONOS Cloud software allows 
for the distribution of various resources to different availability zones. 
 
For more information regarding the IONOS Cloud please refer to the IONOS Service Catalog. 

1.3 Introduction to Red Hat OpenShift Container Platform 
Red Hat OpenShift Container Platform is a trusted, comprehensive, and consistent platform to 
develop, modernize, and deploy applications at scale, including today’s AI-enabled apps. It 
enables businesses to innovate faster with a complete set of services for bringing apps to 
market on your choice of infrastructure. 
 
OpenShift Container Platform is the leading hybrid cloud application platform, bringing together 
a comprehensive set of tools and services that streamline the entire application lifecycle, from 
development to delivery to management of app workloads. 
 
Trusted by 3,000 customers across industries (including 56% of the top 25 Global Fortune 500), 
it combines built-in security features with dedicated support, a trusted software supply chain, 
and Red Hat Enterprise Linux as the operating foundation. 
 
OpenShift Container Platform offers a complete and consistent application platform that can be 
fully managed in the public cloud or self-managed in any environment, offering a more 
integrated and streamlined platform for innovation while reducing operational complexity. The 
different functionalities and layers are visualized in the following graphics: 
 

 

5 

https://docs.ionos.com/support/general-information/service-catalog


 

 
The architecture of Red Hat OpenShift Container Platform consists of the following key 
components: 
 

●​ Control Plane (Master Nodes) 
○​ API Server – Manages Kubernetes API requests. 
○​ Controller Manager & Scheduler – Assigns workloads and maintains cluster 

state. 
○​ etcd – Stores cluster metadata. 
○​ OAuth Server – Handles authentication & authorization. 

 
●​ Worker Nodes (Compute Nodes) 

○​ Kubelet & CRI-O – Runs containers. 
○​ Kube Proxy & SDN – Manages networking and inter-pod communication. 

 
●​ OpenShift-Specific Enhancements 

○​ Router (HAProxy) – Ingress traffic management. 
○​ Operators & OLM – Automates app deployment. 
○​ Persistent Storage – Supports PVs & CSI-based storage. 
○​ Monitoring & Logging – Uses Prometheus, LokiStack and OpenTelemetry. 

 
●​ CI/CD & Developer Tools 

○​ OpenShift Pipelines (Tekton) – Cloud-native CI/CD automation. 
○​ Source-to-Image (S2I) – Directly converts source code to container images. 
○​ GitOps (ArgoCD) – Declarative application deployment. 

 
●​ Security & Governance 

○​ RBAC & Security Context Constraints (SCCs) – Role-based security policies. 
○​ Network Policies – Controls pod-to-pod communication. 

 
For more details, please review the Red Hat OpenShift Container Platform documentation. 

 

6 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/architecture/index


 

2 Red Hat OpenShift Container Platform installation 
details 
 

2.1 Understanding OpenShift Container Platform Installation 
Method Differences 
 
Red Hat OpenShift Container Platform offers four different installation methods to suit various 
infrastructure and operational needs: 
 

●​ Automated / Installer-Provisioned Infrastructure (IPI) 
○​ The OpenShift installer provisions and configures the required infrastructure 

automatically. 
○​ Suitable for cloud environments such as AWS, Azure, and vSphere or baremetal 

host baseboard management controller (BMC) integrations 
○​ Eases deployment by handling networking, compute, and storage provisioning. 

 
●​ Full Control / User-Provisioned Infrastructure (UPI) 

○​ Requires users to manually set up and configure the infrastructure before 
deploying OpenShift. 

○​ Provides more flexibility and customization for on-premise and bare-metal 
environments. 

○​ Best for enterprises with specific networking, security, or hardware requirements. 
 

●​ Local Agent-based  
○​ Uses pre-configured bootable images (ISO) for streamlined deployments. 
○​ Best suited for air-gapped or disconnected environments. 
○​ Reduces manual intervention in large-scale deployments. 

 
●​ Interactive (Assisted Installer) 

○​ A web-based guided installation provided by Red Hat Hybrid Cloud Console. 
○​ Simplifies deployment for OpenShift clusters in various environments. 
○​ Ideal for both connected and disconnected setups, with pre-validation 

capabilities. 
 
Please review the documentation for more details about the different deployment methods. 
 
Each method supports to deploy a Cluster with the following characteristics: 

●​ Highly available infrastructure with no single points of failure, which is available by 
default. 

●​ Administrators can control what updates are applied and when. 

7 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installation_overview/ocp-installation-overview#installation-overview_ocp-installation-overview


 

 
This deployment guide describes the Local Agent-based installation method, as this is the 
recommended one for setting up Red Hat OpenShift Container Platform on IONOS.  
 
Please note that for the validation of Red Hat OpenShift Container Platform on IONOS (as 
referenced in the Red Hat Ecosystem catalog), exactly this installation method was used. 
 
Additionally, we will use some of the infrastructure preparation guidelines from the Full Control 
(UPI) installation method and adapt those to the needs for IONOS cloud. 

2.2 Understanding connected and disconnected environments 
The main difference between connected and disconnected installations of Red Hat OpenShift 
Container Platform lies in their network connectivity and access to external resources: 
 

●​ Connected Installation 
○​ Internet Access: Requires direct internet access for all machines in the cluster. 
○​ Image Retrieval: Can pull container images directly from Red Hat's online 

repositories. 
○​ Updates: Allows for automatic updates and easier access to the latest 

components. 
○​ Operator Hub: Utilizes the default Operator Hub and external image registries. 

 
●​ Disconnected Installation 

○​ Network Isolation: Operates in a network-restricted environment with limited or 
no internet access. 

○​ Local Resources: Requires mirroring of all necessary images and content to a 
local container registry. 

○​ Manual Updates: Needs manual intervention for updates and new component 
installations. 

○​ Custom Configuration: Uses a local mirror registry to host required images and 
content, with additional setup steps such as: 

■​ Configuring custom Network Time Protocol (NTP) settings. 
■​ Creating a mirror registry for Red Hat OpenShift. 
■​ Using tools like oc-mirror to mirror images locally. 
■​ Adjusting installation configuration files to point to local resources. 

 
●​ Key Considerations for Disconnected Installations 

○​ Security and Compliance: Provides better control over the environment and 
reduces external dependencies. 

○​ Self-contained Environment: Ensures all necessary components are available 
locally without relying on external sources. 

○​ Preparation Effort: Requires more setup steps and resources before installation 
compared to connected installations. 

8 

https://catalog.redhat.com/search?searchType=cloud&certified_RedHat_Platforms=Red%20Hat%20OpenShift


 

○​ Update Process: Involves manually mirroring and applying updates to the 
cluster. 

 
Disconnected installations are ideal for organizations with strict security requirements or those 
operating in environments with limited or no internet connectivity. While they offer greater control 
and isolation, they require more preparation and ongoing manual management than connected 
installations. 
 
More details are available in the Red Hat OpenShift Container Platform documentation. 
 
This deployment guide describes a connected Red Hat OpenShift Container Platform 
installation details for IONOS. 
 
Please note that for the validation of Red Hat OpenShift Container Platform on IONOS (as 
referenced in the Red Hat Ecosystem catalog), the connected installation was used. 
 

2.3 Understanding OpenShift Container Platform installation 
topologies  
 
Red Hat OpenShift Container Platform offers several deployment topologies to accommodate 
various infrastructure needs and use cases: 
 

●​ Highly available OpenShift Cluster (HA): 
○​ Traditional deployment with multiple nodes 
○​ Consists of at least three control plane nodes and two or more worker nodes 
○​ Highly scalable, supporting thousands of instances across hundreds of nodes 
○​ Provides high availability and fault tolerance 
○​ Suitable for production environments requiring scalability and complex 

applications 
 

●​ Three-node OpenShift Cluster (Compact): 
○​ Reduced minimum system requirements compared to multi-node deployments 
○​ Consists of three nodes that can run both control plane and applications 
○​ Balances resource efficiency with high availability 
○​ Suitable for smaller deployments or environments with limited resources 

 
●​ Single-node OpenShift Cluster (SNO): 

○​ Allows running OpenShift on a single node 
○​ Ideal for edge use cases and environments with space or resource constraints 
○​ Introduced to support edge computing scenarios 
○​ Offers the core functionality of OpenShift in a minimal footprint 

 

9 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/disconnected_environments/index
https://catalog.redhat.com/search?searchType=cloud&certified_RedHat_Platforms=Red%20Hat%20OpenShift


 

Please note the generally recommended minimum cluster resources for the different topologies 
and particular check with the requirements for OpenShift on IONOS in chapter 3: 
 
 

Topology Number of 
control 
plane nodes
​  

Number of 
compute 
nodes​ 

vCPU Memory Storage 

Single-node 
cluster 

1 0 8 vCPUs 16 GB of 
RAM 

120 GB 

Compact 
cluster 

3 0 or 1 8 vCPUs 16 GB of 
RAM 

120 GB 

HA cluster 3 to 5 2 and above 8 vCPUs 16 GB of 
RAM 

120 GB 

 
 
Please remember: Within this deployment guide, only the default OpenShift High Availability 
Cluster (consisting of 3 Control-Plane Nodes and 2 Worker Nodes) topology will be described, 
as this is the bare minimum recommended for production environments and required for the 
Red Hat Ecosystem certification. 
 
Please remember: Minimum requirements, especially for the Control Plane Nodes may not fit 
to the intended usage of the Red Hat OpenShift Container Platform Cluster. Depending on the 
expected workload (number of deployments, pods, Operators, …) and the expected size of the 
Cluster (number of Compute Nodes), it is highly recommended to already start with appropriate 
resources. More details can be found in the 8.5 Scaling the OpenShift Cluster chapter of the 
deployment guide. 
 

 

10 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/preparing-to-install-with-agent-based-installer#agent-based-installer-recommended-resources_preparing-to-install-with-agent-based-installer
https://catalog.redhat.com/search?searchType=cloud&certified_RedHat_Platforms=Red%20Hat%20OpenShift


 

3 IONOS Service and OpenShift Requirements 

3.1 Description of relevant IONOS services 

3.1.1 Compute (IONOS Dedicated Core Server) 
Under the term “Compute Engine”, IONOS Cloud offers its customers "Infrastructure as a 
Service" (IaaS) in the form of virtual computing, data storage, and network resources. The 
customer is able to make use of these resources on a flexible basis as required. The resources 
used (Cores/vCPUs, RAM, Storage) are billed to the customer by the minute based on a price 
list, which is valid at the time. 
 
For OpenShift Container Platform, we are using the Dedicated Core Server variant: 
These virtual machines run on dedicated CPU Cores. With Dedicated Core Servers you gain full 
access to the provisioned CPU resources,free from resource sharing with other virtual machines 
on the same physical host. This guarantees optimal performance, stability, reduced latency and 
predictable performance. You can freely configure the number of cores and RAM required for 
your workloads, while choosing from the available CPU types available in your current VDC. 
Dedicated Core Servers can boot from a storage volume, a CD-ROM, or a NIC. 

3.1.2 Disk Storage (IONOS Cloud Block Storage) 
IONOS Cloud Hard Disk Drive (HDD) and Solid State Drive (SSD) Block Storage allow the 
customer to make use of a dual-redundant storage system. Each block storage created by the 
customer is stored on two storage servers, providing active-active redundancy. For additional 
data protection, every storage server is based either on a hardware RAID system or on a 
software RAID system. 
 
For Solid State Drive volumes, IONOS Cloud offers two performance classes that can be 
selected at the time of ordering the volume. SSD Premium is optimized for high performance 
while SSD Standard is recommended for fast data access with general-purpose scenarios. 
 
For OpenShift Container Platform, we are using the SSD Premium class. 

3.1.3 Object Storage (IONOS Object Storage) 
IONOS Object Storage is a secure, scalable storage solution that offers high data availability 
and performance. 
The product adheres to the S3 API standards, enabling the storage of vast amounts of 
unstructured data and seamless integration into S3-compatible applications and infrastructures. 
 
IONOS Object Storage is included with every contract, with no need for additional registration or 
activation. Through a user-friendly graphical interface, as well as standard S3-compatible Object 

11 

https://docs.ionos.com/support/general-information/service-catalog#dedicated-core-server
https://docs.ionos.com/support/general-information/service-catalog#ionos-cloud-block-storage
https://docs.ionos.com/support/general-information/service-catalog#ionos-object-storage


 

Storage clients, customers can efficiently manage their objects and configure access controls 
using Bucket Policies in accordance with the S3 Object Storage standard. 

3.1.4 NAT Gateway (IONOS Managed NAT Gateway) 
In all locations, IONOS Cloud provides a Managed Network Address Translation (NAT) 
Gateway. This service is exposing a Source NAT gateway which means it allows access from 
the virtual instance to the internet but blocks requests from the internet to the virtual 
infrastructure. This enables internet access to virtual machines without exposing them to the 
internet by a public interface. While being "hidden" from the internet and not being exposed to 
threats, the virtual machine still can initiate a connection to the customizable targets on the 
internet, e.g., to download new software updates or patches. 

3.1.5 DNS (IONOS Cloud DNS) 
IONOS Cloud DNS allows customers to publish Domain Name System (DNS) zones for their 
domains and subdomains on public Name Servers. 
 
Customers can manage their DNS zones and records via the Cloud DNS API and also create 
and manage Reverse DNS records for IPv4 and IPv6 addresses. 
 
The IONOS Name Server infrastructure is distributed across 14 points of presence (POPs) in 
Europe and the USA to ensure fast and reliable DNS resolution for customers in these 
locations. 
 

3.1.6 LoadBalancer (IONOS Managed Network Load Balancer) 
IONOS Cloud offers a Managed Network Load Balancer (NLB) that is balancing layer 4/ 
TCP-based network traffic. This service is available in all locations. 
 
Network Load Balancers can be provisioned as a private as well as a public load balancer. A 
public load balancer requires the configuration of a reserved public IP address for the target 
configuration. The network load balancer allows the configuration of multiple, individual load 
balancer rules which can be applied to virtual machines being members of the listener LAN. 
 

3.2 OpenShift Container Platform resource requirements on 
IONOS 

3.2.1 Compute 
IONOS Cloud offers different Compute Engine services. For OpenShift Container Platform, it is 
required to choose the Dedicated Core Server offerings, as this provides the best performance 
for the OpenShift Container Platform Nodes. 

12 

https://docs.ionos.com/support/general-information/service-catalog#managed-nat-gateway
https://docs.ionos.com/support/general-information/service-catalog#dns
https://docs.ionos.com/support/general-information/service-catalog#managed-network-load-balancer


 

 
It is generally recommended to provide sufficient compute resources, especially for the Control 
Plane Nodes of OpenShift Container Platform.  
As we do not have a deeper integration of OpenShift Container Platform to the IONOS Cloud at 
this time, we can’t use i.e. ControlPlaneMachineSets to easily scale the Control-Plane Nodes as 
our Cluster grows over time. 
For this reason, it is recommended to start with 8 vCPUs and 16 GB RAM for Control-Plane 
Nodes. 
 
Worker-Nodes should be sized according to the expected application workload but should  
respect  the required minimum for vCPU and Memory. Within this deployment guide, we are 
using the recommended 4 vCPUs and 8GB RAM for Worker Nodes.  
 

3.2.2 Storage 
OpenShift Container Platform is sensitive to disk performance, and faster storage is 
recommended, particularly for etcd on the Control-Plane Nodes which require a 10 ms p99 
fsync duration.  
Note that on many cloud platforms, storage size and IOPS scale together, so you might need to 
over-allocate storage volume to obtain sufficient performance. 
Tests have shown that on IONOS Cloud, 600GB SSD Premium volumes do have the needed 
IOPS and latency for running etcd and other Control-Plane components. 
You can learn more about the etcd disk backend performance requirements in the following 
Red Hat Solution: https://access.redhat.com/solutions/4770281 
 
As the disk performance needs for Worker Nodes are lower, we can use the recommended 
120GB SSD Premium volume size here. 

3.2.3 NTP 
OpenShift Container Platform clusters are configured to use a public Network Time Protocol 
(NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is 
being deployed in a disconnected network, you can configure the cluster to use a specific time 
server. For more information, see the documentation for Configuring chrony time service. 

3.2.4 DNS 
In OpenShift Container Platform deployments, DNS name resolution is required for the following 
components: 

●​ The Kubernetes API 
●​ The OpenShift Container Platform application wildcard 
●​ The control plane and compute machines 

 

13 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/preparing-to-install-with-agent-based-installer#agent-based-installer-recommended-resources_preparing-to-install-with-agent-based-installer
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/machine_management/managing-control-plane-machines#cpmso-about
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_on_any_platform/installing-platform-agnostic#installation-minimum-resource-requirements_installing-platform-agnostic
https://access.redhat.com/solutions/4770281
https://docs.openshift.com/container-platform/latest/installing/install_config/installing-customizing.html#installation-special-config-chrony_installing-customizing


 

Reverse DNS resolution is also required for the Kubernetes API, the control plane machines, 
and the compute machines. It is recommended to use a DHCP server to provide the hostnames 
to each cluster node. 
 
Please review the official OpenShift documentation to prepare all the needed DNS 
configurations. 

3.2.5 Load Balancing 
Before you install OpenShift Container Platform, you must provision the API and application 
Ingress load balancing infrastructure. In production scenarios, you can deploy the API and 
application Ingress load balancers separately so that you can scale the load balancer 
infrastructure for each in isolation. 
 
The load-balancing infrastructure must meet the following requirements: 
 
API load balancer: Provides a common endpoint for users, both human and machine, to 
interact with and configure the platform. Configure the following conditions: 
 

●​ Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or 
SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name 
Indication (SNI) for the API routes. 

●​ A stateless load balancing algorithm. The options vary based on the load balancer 
implementation. 

 
Configure the following ports on both the front and back of the load balancers: 
 

Port Back-end 
machines (pool 
members) 

Internal External Description 

6443 Control plane. 
You must 
configure the 
/readyz endpoint 
for the API 
server health 
check probe. 

✅ ✅ Kubernetes API 
Server 

22623 Control Plane ✅  Machine config 
server 

 
 
Application Ingress load balancer: Provides an ingress point for application traffic flowing in 
from outside the cluster. A working configuration for the Ingress router is required for an 
OpenShift Container Platform cluster. 

14 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/preparing-to-install-with-agent-based-installer#agent-install-dns-none_preparing-to-install-with-agent-based-installer


 

Configure the following conditions: 
 

●​ Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or 
SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name 
Indication (SNI) for the ingress routes. 

●​ A connection-based or session-based persistence is recommended, based on the 
options available and types of applications that will be hosted on the platform. 

 
Configure the following ports on both the front and back of the load balancers: 
 
 

Port Back-end 
machines (pool 
members) 

Internal External Description 

443 The machines 
that run the 
Ingress 
Controller pods, 
compute, or 
worker, by 
default. 

✅ ✅ HTTPS traffic 

80 The machines 
that run the 
Ingress 
Controller pods, 
compute, or 
worker, by 
default. 

✅ ✅ HTTP traffic 

 
 
Please refer to chapter 3.2.7 to learn more about the IONOS specific LoadBalancer 
implementation and configuration. 
 
Chapter 6 will also provide more details and examples about configuring LoadBalancing for 
OpenShift on IONOS. 
 

3.3 General prerequisites needed 

3.3.1 Pull Secret from console.redhat.com 
An image pull secret provides authentication for the cluster to access services and registries 
that serve the container images for OpenShift components. Every individual user gets a single 
pull secret generated. 

15 



 

 
The pull secret is used when installing an OpenShift Container Platform cluster. 
 
It can be retrieved from the OpenShift Cluster Manager within the Red Hat Hybrid Cloud 
Console. Go to Downloads in OpenShift Cluster Manager and find your pull secret in the 
Tokens category. 
 

 
 
Important: Do not share your pull secret. The pull secret should be treated like a password. 

3.3.2 SSH-Key 
During an OpenShift Container Platform installation, you can provide an SSH public key. This 
key is added to the ~/.ssh/authorized_keys list for the “core” user on each Red Hat 
Enterprise Linux CoreOS (RHCOS) node, enabling password-less SSH access. You can then 
use the corresponding private key to SSH into the nodes as the user "core." 
 
If you do not already have an existing SSH key pair, please create one according to the 
following example: 
ssh-keygen -t ed25519 -C 'ocp-admin@ionos' -f <path>/<file_name> 
 
For seamless SSH access to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes, it is 
recommended to add the private SSH key to your local user's SSH agent.  
 
More detailed information can be found in the OpenShift documentation. 
 

3.3.3 Platform selection 
OpenShift Container Platform includes the Cluster Cloud Controller Manager Operator 
(CCCMO). CCCMO is based on Kubernetes and the overall idea is to move the cloud controller 
functionality out of the Kubernetes core and into separate Cloud Controller Managers. 
 
A Cloud Controller Manager is a Kubernetes component that allows cloud providers to integrate 
their services with Kubernetes clusters. It manages node lifecycle, load balancers, persistent 

16 

https://console.redhat.com/openshift/downloads
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_on_any_platform/installing-platform-agnostic#ssh-agent-using_installing-platform-agnostic
https://github.com/openshift/cluster-cloud-controller-manager-operator


 

volumes, and other cloud-specific resources for some of the most popular hyperscaler Cloud 
Providers. 
 
However, your preferred sovereign cloud provider IONOS currently has no Cloud Controller 
Manager integration for OpenShift Container Platform.For this reason, we are going to deploy 
and configure some of the infrastructure requirements (i.e. LoadBalancer, Networking, Storage) 
manually throughout this documentation. 
 
For this reason, it is important to select the appropriate platform: external configuration 
directive (in the install-config.yaml file) during the OpenShift Container Platform 
installation on IONOS. 
 
The deployment chapters within this document will honor the platform: external 
requirement. 
 
Please carefully inspect the install-config.yaml template in Chapter 6.4.1, which should 
be used for the installation. 
 
You can find more details about the OpenShift Container Platform type “External” in the 
following blog post. 

 

17 

https://www.redhat.com/en/blog/faster-onboarding-for-new-infrastructure-providers-with-red-hat-openshifts-external-platform


 

4 Prepare general resources for the IONOS Cloud 

4.1 Log in to the IONOS Data Center Designer (DCD) 
●​ Open a web browser and navigate to https://dcd.ionos.com. 
●​ On the top right corner of the login screen, select your preferred language. The DCD 

supports German (DE), English (EN), French (FR), and Spanish (ES) languages. 
●​ Enter the Email Address and Password details that were obtained during the sign-up 

process for an IONOS Cloud account. 
 

 
 

4.2 Generate authentication token 
As we are going to create the resources on IONOS Cloud with “Terraform”, it is recommended to 
generate and use an authentication token when interacting with the IONOS API. 
For IONOS accounts with two-factor authentication enabled (which is always recommended!), 
it’s mandatory to use authentication tokens. 
 
To create a secure authentication token for authorizing to use APIs and SDKs, follow these 
steps: 
 

●​ In the DCD, go to Menu > Management > Token Management 

18 

https://dcd.ionos.com


 

 
●​ In the API/SDK Authentication Token Manager, select Generate Token 
●​ Press Download to save the Token to a file and Close the token-generated window. 

 
 

4.3 Adding SSH Key 
The DCD's SSH Keys view allows you to save and manage up to 100 public SSH keys for SSH 
access setup. SSH Keys are bound to your IONOS account and not to a specific VDC. 
Configuring your public SSH key as a Default key, it will be automatically pre-selected and 
used for IONOS VMs deployed. 
 
You may refer to Chapter 3.4.2 to learn more about generating SSH Key Pairs. 
 
However, keep in mind that the SSH Key added to the IONOS DCD will not be automatically 
injected into the Red Hat CoreOS Nodes deployed by the OpenShift Container Platform 
installation described in this deployment guide. 
 
For this reason, it is recommended to use one SSH Key Pair (i.e. named vdc-admin) for getting 
access to the “helper” VM “Management” and a second one (i.e. named ocp-admin) provided to 
the OpenShift Container Platform installation process for accessing the Red Hat CoreOS Nodes 
during i.e. troubleshooting. 
 
Please refer to the IONOS Cloud documentation about how to add the “vdc-admin” SSH 
private key as a default key to the DCD. 
 

19 

https://docs.ionos.com/cloud/compute-services/compute-engine/how-tos/connect-via-ssh/manage-ssh-keys#store-ssh-keys-in-the-dcd


 

4.4 Reserve public IPv4 addresses 
For the architecture described within this deployment guide, we will need three public IP 
addresses on the IONOS Cloud: 
 

●​ Public IP address for the “Management” Red Hat Enterprise Linux host 
●​ Public IP address for the IONOS Network-Load-Balancer (API and Ingress traffic for 

OpenShift Container Platform)  
●​ Public IP address for the IONOS NAT Gateway Egress 

  
To reserve an IP address for the “Management” host, follow these steps: 
 

●​ In the DCD, go to the Menu > Network Services > IP Management. 
●​ In the IP Manager, select + Reserve IPs. 
●​ Enter the following IP block information: 

○​ Name: Enter a name for the IP block, here “Management” 
○​ Number of IPs: Enter the number of IPv4 addresses you want to reserve, here: 1 
○​ Region: Enter the location of the IONOS data center where you want your IPs to 

be available, here: Germany/Frankfurt am Main  
●​ Confirm your entries by selecting Reserve IPs. 

 

 
 
 
Repeat this process for the “Load Balancer” and “NAT Gateway” public IP address.  

20 



 

5. Architectural overview 
Before we are finally preparing the IONOS Cloud resources and start the OpenShift Container 
Platform deployment in Chapter 6, let’s have a look at the desired architectural overview: 
 

 
 
This screenshot from the IONOS Data Center Designer (DCD) shows an overview of the Cloud 
resources to be deployed: 

●​ Internal and Public Network (LAN 1 and LAN 2) 
●​ Management Server connected to both networks 
●​ Network Load Balancer and Management Server connected to LAN 2 with Internet 

Access 
●​ NAT Gateway with SNAT Rule, providing outgoing internet access for all Dedicated Core 

21 



 

Server VMs in LAN 1 
●​ Three OpenShift Container Platform Control-Plane Nodes (named control-0 to -2) with 8 

vCPUs and 16GB RAM 
●​ Two OpenShift Container Platform Worker Nodes (named compute-0 to -1) with 4 

vCPUs and 8GB RAM 

 

22 



 

6 Deploy Openshift Container Platform with the  
Agent-based Installer on IONOS Cloud 

6.1 General description 

6.1.1 About the Agent-based Installer 
OpenShift Container Platform's agent-based installation method offers significant benefits for 
deploying clusters, particularly in on-premises and disconnected environments. This modern 
approach combines flexibility with simplicity while addressing key operational challenges. 
 

6.1.2 Understanding the Agent-based Installer 
Agent-based installation is a subcommand of the OpenShift Container Platform installer. The 
openshift-install agent create image subcommand generates a bootable ISO 
image containing all of the information required to deploy an OpenShift Container Platform 
cluster, with an available release image. 
 
The configuration is in the same format as for the installer-provisioned infrastructure and 
user-provisioned infrastructure installation methods. 
 

6.1.3 Agent-based Installer Workflow 
One of the control plane hosts runs the Assisted Service at the start of the boot process and 
eventually becomes the bootstrap host. This node is called the rendezvous host (node 0).  
The Assisted Service ensures that all the hosts meet the requirements and triggers an 
OpenShift Container Platform cluster deployment.  
All the nodes have the Red Hat Enterprise Linux CoreOS (RHCOS) image written to the disk. 
The non-bootstrap nodes reboot and initiate a cluster deployment. Once the nodes are 
rebooted, the rendezvous host reboots and joins the cluster.  
The bootstrapping is complete and the cluster is deployed. 
 
The following diagram shows the installation workflow in detail: 
 

23 



 

 
You can find more details about the Agent-based Installer in the OpenShift documentation. 
 
Please remember: While the Agent-based Installer generally supports different OpenShift 
Cluster topologies, only the default OpenShift High Availability Cluster (consisting of 3 
Control-Plane Nodes and 2 Worker Nodes) topology is relevant, as this is the bare minimum 
recommended for production environments and required for the Red Hat Ecosystem 
certification. 
 

24 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/preparing-to-install-with-agent-based-installer#about-the-agent-based-installer_preparing-to-install-with-agent-based-installer
https://catalog.redhat.com/search?searchType=cloud&certified_RedHat_Platforms=Red%20Hat%20OpenShift
https://catalog.redhat.com/search?searchType=cloud&certified_RedHat_Platforms=Red%20Hat%20OpenShift


None

None

 

6.2 Check Prerequisites 
Before actually starting the deployment of OpenShift Container Platform, make sure that the 
following prerequisites are fulfilled: 
 

●​ Pull Secret - see Chapter 3.5.1 
●​ SSH-Key “ocp-admin” - see Chapter 3.5.2 
●​ SSH-Key “vdc-admin” added to the IONOS DCD account - see Chapter 4.3 
●​ IONOS API Token - see Chapter 4.2 
●​ Terraform and terraform-provider-ionoscloud >= 6.4.10  

6.3 Create the IONOS VDC and the Management Server 
To install, configure, and manage OpenShift Container Platform from a secured virtual machine 
within the VDC, we are going to prepare a small vCPU Server (2 vCPU, 4GB RAM, 30GB SSD) 
using a Red Hat Enterprise Linux (RHEL) 9 image from the IONOS catalog.  
 
This vCPU Server will be created along with the IONOS VDC and the needed networks using 
“Terraform”. 
 

6.3.1 Running Terraform locally to create initial IONOS resources 
 
Assuming you have “Terraform” installed on your local (Linux) machine, please follow the 
following steps: 
 

●​ Create IONOS Token environment variable for “Terraform” 
In Chapter 4.2, we generated the IONOS API token that we are now going to use with 
“Terraform”. 

 

# export IONOS_TOKEN="your-IONOS-API-TOKEN" 

 
●​ Create infrastructure directory 

 

# mkdir $HOME/infrastructure 

 
 

●​ Create “Terraform” main.tf 

25 



None

 

In “Terraform”, main.tf is a commonly used file that serves as the primary 
configuration file for defining infrastructure resources. 
Create the main.tf file with the following content: 

 

# Configuring the provider for IONOS Cloud 
terraform { 
  required_providers { 
    ionoscloud = { 
      source  = "ionos-cloud/ionoscloud" 
      version = ">= 6.4.10" 
    } 
  } 
} 
 
# Creating the IONOS VDC in Germany/Frankfurt am Main location 
resource "ionoscloud_datacenter" "openshift" { 
  name        = "OpenShift Reference Cluster" 
  location    = "de/fra/2" 
  description = "OpenShift Container Platform on IONOS Cloud" 
} 
 
# Configuring public LAN 
resource "ionoscloud_lan" "public" { 
  datacenter_id = ionoscloud_datacenter.openshift.id 
  public        = true 
  name          = "Public" 
} 
 
# Configuring private LAN 
resource "ionoscloud_lan" "internal" { 
  datacenter_id = ionoscloud_datacenter.openshift.id 
  public        = false 
  name          = "Internal" 
  depends_on = [ 
    ionoscloud_lan.public, 
  ] 
} 
 
# Creating the Management Server in the VDC 
resource "ionoscloud_vcpu_server" "management" { 
    name                  = "Management" 
    datacenter_id         = ionoscloud_datacenter.openshift.id 
    cores                 = 2 
    ram                   = 4096 

26 



None

 

    image_name            = "rhel:9" 
    ssh_keys              = ["paste-your-public-ssh-key-called-vdc-admin"] 
    volume { 
        name              = "system" 
        size              = 30 
        disk_type         = "SSD Standard" 
        bus               = "VIRTIO" 
    } 
    nic { 
        lan               = ionoscloud_lan.public.id 
        name              = "public-nic" 
        dhcp              = true 
        ips               = [ var.management_server_ip[0] ] 
    } 
} 
 
# Adding a second NIC to the Management Server for the internal LAN 
resource "ionoscloud_nic" "management" { 
  datacenter_id         = ionoscloud_datacenter.openshift.id 
  server_id             = ionoscloud_vcpu_server.management.id 
  lan                   = ionoscloud_lan.internal.id 
  name                  = "internal-nic" 
  dhcp                  = true 
} 
 

 
●​ Create “Terraform” variables.tf 

In “Terraform”, variables are defined in a variables.tf file using the variable 
block. 
Please change the “management_server_ip” to the Public IP reserved in Chapter 4.4 
Create the variables.tf with the following content: 

 

# As we need to call Terraform multiple times due to dependencies between the 
different IONOS Cloud resources, 
# it makes sense to have on central variables.tf file. 
# There are new variables which need to be added in every stage, so please 
carefully check the comments. 
 
## STAGE 1: Create datacenter, LANs and Management host 
 

27 



None

 

# External IP for the management host, as reserved in the IONOS DCD 
IP-Management tool 
variable "management_server_ip" { 
  description = "External IP Management Server" 
  type        = list(any) 
  default     = ["xxx.xxx.7.70"] 
} 

 
●​ “Terraform” stages to be executed: 

○​ Change into the $HOME/infrastructure directory 
○​ Initialize (terraform init) 

■​ Prepares the working directory by downloading provider plugins and 
configuring backends. 

○​ Plan (terraform plan) 
■​ Creates an execution plan, showing what changes will be made to match 

the desired state. 
○​ Apply (Deploy) (terraform apply) 

■​ Executes the plan to create, update, or destroy resources as needed. 
 

●​ The “Terraform” Apply step should print out the following output: 
 

datacenter-id = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" 
internal-lan-cidr = "10.7.200.0/23" 
internal-lan-id = "1" 
public-lan-id = "2" 
management-internal-ip = tolist(["10.7.200.11",]) 
management-public-ip = "xxx.xxx.7.70" 

 
Those IONOS resource IDs and IP addresses will be needed in the next steps as input 
variables, so please make sure to note them down. 

6.3.2 Preparing the “Management” virtual machine 
While working through Chapter 6.3.1 earlier, we created a small Red Hat Enterprise Linux virtual 
machine on IONOS. 
The purpose of this VM is to act as the management environment for the OpenShift Container 
Platform Cluster to be installed. 

28 



None

None

None

 

You are going to connect to this machine externally via SSH key. The “Management” VM acts as 
some kind of “jump-host” to the OpenShift Container Platform Nodes in case of emergency 
access needed. 
We will also utilize the “Management” VM to run the OpenShift Installer, prepare the ISO 
images, host additional boot artifacts and eventually connect to additional systems in the 
specific VDC. 

6.3.3 Connecting to the “Management” virtual machine 
When preparing the general IONOS resources in Chapter 4, you also added an SSH Public Key 
for the Red Hat Enterprise Linux instance created in Chapter 6.3.1. 
 
On your local machine, please add the corresponding private SSH Key to your SSH Agent for 
passwordless access: 
 

$ eval "$(ssh-agent -s)" 
Agent pid 31874 

 

$ ssh-add <path>/vdc-admin_ssh_priv_key> 

Identity added: /home/<you>/<path>/<file_name> (<computer_name>) 

After that, you should be able to connect to the “Management” VM with the public IP address 
assigned earlier: 
 

$ ssh root@management-vm-public-ip 

Update the VM packages and reboot the VM afterwards:​
 

$ dnf update -y 
... 
python3-resolvelib-0.5.4-5.el9.noarch             
 
Complete! 
$ reboot 
$ Connection to xxx.xxx.xxx.xxx closed by remote host. 

Connect again: 
 

29 



None

None

None

None

 

$ ssh root@management-vm-public-ip 

6.3.4 Installing required software 
Note: Within this deployment guide and to keep the guide shorter, we are working as the “root” 
user on the “Management” VM. This (of course) isn’t the best practice, and you should consider 
creating a dedicated unprivileged user for the following activities. It’s also important to harden 
and secure the “Management” VM according to your organization's individual security 
requirements and standards! 
  
In the first step we installing some needed and helpful additional tools via the RPM packages 
available for the RHEL server: 
 
 

# dnf -y install nmstate jq bind-utils tmux wget bash-completion httpd git 

Enable the Apache Http-Server as we will need it to serve boot artifacts later on: 
 

# systemctl enable httpd.service 
# systemctl start httpd 

 
As we will later need the Apache Http-Server to host the root-fs image for Red Hat CoreOS, 
please add http as allowed service to the default IONOS RHEL image configuration: 
 
 

# firewall-cmd --permanent --zone=public --add-service=http && firewall-cmd 
--reload 

Note: 
It is recommended to create a more sophisticated RHEL firewall configuration for the 
“Management” VM (i.e. allowing http and other services only on the internal interface), but this is 
out of scope within this OpenShift Deployment Guide. 
 
Red Hat Enterprise Linux (RHEL) does not ship with HashiCorp Terraform pre-installed. 
However, you can easily install Terraform on RHEL using the yum or dnf package manager by 
adding the HashiCorp repository to your system: 

30 



None

None

None

 

 
 

# dnf config-manager addrepo --add-repo 
https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo 
 
# dnf -y install terraform 
 
 

As a last step, we need to download and install the OpenShift Container Platform command line 
client (oc) and the Installer. 
 
NOTE: Carefully inspect the openshift-install-linux URL, as this specifies the actual 
Red Hat OpenShift Container Platform release you are going to install. 
 
 

# mkdir /root/bin && wget -qO- 
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/4.17.27/opensh
ift-install-linux-4.17.27.tar.gz | tar -xz -C /root/bin 
 
# wget -qO- 
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/stable/openshi
ft-client-linux-amd64-rhel9.tar.gz | tar -xz -C /root/bin 

This will download and extract the needed binary files in the /root/bin directory, which should be 
in your PATH already: 
 
 

# ll /root/bin 
total 1006020 
-rw-r--r--. 1 root root       950 Feb 26 06:38 README.md 
-rwxr-xr-x. 2 root root 185054328 Feb 26 06:38 kubectl 
-rwxr-xr-x. 2 root root 185054328 Feb 26 06:38 oc 
-rwxr-xr-x. 1 root root 660041880 Mar 11 20:15 openshift-install 
 

31 



None

None

None

 

6.4 Install a Highly Available OpenShift Container Platform 
Cluster 
 
Within this chapter we are going to the detailed steps to configure the Cluster specific resources 
on IONOS Cloud and finally install the OpenShift Container Platform Cluster using the 
Agent-based Installer. 
 
We are assuming the following names: 

●​ Cluster Name: ocp 
●​ Base Domain: ionos.yourdomain.de 

 
All the following steps will be executed from the "Management" server we installed and 
configured in Chapter 6.3. 
 

6.4.1 Prepare the “Terraform” working directories on the “Management” 
server 

 
●​ Create IONOS Token environment variable for “Terraform” 

In Chapter 4.2, we generated the IONOS API token that we are now going to use with 
“Terraform”. 

 

# export IONOS_TOKEN="your-IONOS-API-TOKEN" 

 
●​ Create directory structure 

 

# mkdir $HOME/02-provision-infrastructure $HOME/03-configure-lb 

 
●​ Create the $HOME/variables.tf file with the following content: 

 

## STAGE 2: Create VMs and NAT Gateway 
 
# IONOS Datacenter ID (see Terraform output from STAGE 1 and set accordingly) 
variable "datacenter_id" { 

32 

http://ionos.yourdomain.de


 

  default   = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" 
  description = "imported IONOS Cloud Datacenter ID" 
} 
 
# IONOS generated CIDR for the internal LAN (see Terraform output from STAGE 1 
and set accordingly) 
variable "internal_lan_cidr" { 
  default     = "10.7.200.0/23" 
  description = "CIDR for the internal/private network." 
} 
 
# IONOS generated ID number of the internal LAN (see Terraform output from 
STAGE 1 and set accordingly) 
variable "internal_lan_id" { 
  default   = "1" 
  description = "ID of the internal LAN" 
} 
 
# IONOS generated ID number of the public LAN (see Terraform output from STAGE 
1 and set accordingly) 
variable "public_lan_id" { 
  default   = "2" 
  description = "ID of the public LAN" 
} 
 
# External IP for the NAT Gateway reserved earlier as described in the 
Deployment Guide 
variable "nat_egress_ip" { 
  description = "External IP for NAT Gateway, see IONOS DCD IP-Management Tool" 
  default     = "xx.xxx.132.76" 
} 
 
## STAGE 3: Create the IONOS Network Load Balancer (NLB) for OpenShift API and 
Ingress 
 
# External IP for the NLB reserved earlier as described in the Deployment Guide 
variable "external_lb_ip" { 
  description = "External LoadBalancer IP API/Ingress" 
  type        = string 
  default     = "xxx.xxx.96.90" 
} 
 
# IP addresses for the Control Plane Nodes (see Terraform output from STAGE 2 
and set accordingly) 

33 



 

variable "control-ips" { 
  type    = list(any) 
  default = ["10.7.200.xx", "10.7.200.xx", "10.7.200.xx"] 
} 
 
# IP addresses for the Compute Nodes (see Terraform output from STAGE 2 and set 
accordingly) 
variable "compute-ips" { 
  type    = list(any) 
  default = ["10.7.200.xx", "10.7.200.xx"] 
} 
 

 

6.4.2 Provision IONOS Dedicated Core Servers and IONOS NAT Gateway 
As IONOS Cloud offers the freedom to individually configure every compute resource to your 
needs, there are no general instance types available for the Dedicated Core Server product.  
 
Therefore, you need to follow the resource configuration (Compute and SSD storage) outlined 
within this chapter, as this is exactly the required minimum production configuration that was 
used for the Red Hat Ecosystem certification. 
 
In this step, we are provisioning the needed VMs for the Control-Plane and Worker OpenShift 
Nodes. As we need to rely on DHCP within the private network we created in the VDC 
previously, it’s needed to provision the VMs before we actually create the bootable ISO for the 
Agent-based OpenShift installation. 
Once the VM is provisioned, we have the DHCP assigned internal IP address we are going to 
use for the static IP configuration of the OpenShift RHCOS Nodes. 
The static IP configuration is needed due to the limited IONOS DHCP functionality for private 
networks. 
 
Additionally, we are also creating the IONOS NAT Gateway and a general SNAT rule to connect 
our private VMs to public software repositories and NTP (Network Time Protocol) servers. 
Please note that you might need a more fine-grained SNAT rule, according to your 
organization's individual security requirements and standards. 

 

34 

https://catalog.redhat.com/search?searchType=cloud&certified_RedHat_Platforms=Red%20Hat%20OpenShift


None

 

●​ Create “Terraform” $HOME/02-provision-infrastructure/main.tf with the 
following content: 

 

# Configuring the provider for IONOS Cloud 
terraform { 
  required_providers { 
    ionoscloud = { 
      source  = "ionos-cloud/ionoscloud" 
      version = ">= 6.4.10" 
    } 
  } 
} 
 
# Creating the Control Plane Nodes 
resource "ionoscloud_server" "control" { 
  count         = 3 
  name          = "control-${count.index}" 
  datacenter_id = var.datacenter_id 
  cores         = 8 
  ram           = 16384 
  cpu_family    = "AMD_TURIN" 
 
  volume { 
    name      = "control-${count.index}-storage" 
    size      = 600 
    disk_type = "SSD Premium" 
    bus       = "VIRTIO" 
    licence_type  = "OTHER" 
  } 
 
  nic { 
    lan  = var.internal_lan_id 
    name = "internal_nic" 
    dhcp = true 
    mac  = "02:01:e1:40:fe:5${count.index}" #setting a predictable MAC address, 
as we need this in the AgentCongfig.yaml 
  } 
} 
 
# Creating the Compute Nodes 
 
resource "ionoscloud_server" "compute" { 
  count         = 2 
  name          = "compute-${count.index}" 

35 



 

  datacenter_id = var.datacenter_id 
  cores         = 4 
  ram           = 8192 
  cpu_family    = "AMD_TURIN" 
 
  volume { 
    name      = "compute-${count.index}-storage" 
    size      = 120 
    disk_type = "SSD Premium" 
    bus       = "VIRTIO" 
    licence_type  = "OTHER" 
  } 
 
  nic { 
    lan  = var.internal_lan_id 
    name = "internal_nic" 
    dhcp = true 
    mac  = "02:01:e1:50:fe:5${count.index}" #setting a predictable MAC address, 
as we need this in the AgentCongfig.yaml 
  } 
} 
 
# Creating the NAT Gateway 
resource "ionoscloud_natgateway" "openshift" { 
  datacenter_id = var.datacenter_id 
  name          = "NAT Gateway OpenShift" 
  public_ips    = [var.nat_egress_ip] 
  lans { 
    id          = var.internal_lan_id 
    gateway_ips = [cidrhost(var.internal_lan_cidr,1)] 
  } 
} 
 
## Adding NAT Gateway SNAT Rule for Internet Access 
resource "ionoscloud_natgateway_rule" "internet_access" { 
  datacenter_id = var.datacenter_id 
  natgateway_id = ionoscloud_natgateway.openshift.id 
  name          = "internet access" 
  type          = "SNAT" 
  source_subnet = var.internal_lan_cidr 
  public_ip     = var.nat_egress_ip 
} 

 

36 



None

None

 

●​ Create “Terraform” $HOME/02-provision-infrastructure/outputs.tf with 
the following content: 

 

output "nat-gateway-internal-ip" { 
  value = ionoscloud_natgateway.openshift.lans[0].gateway_ips 
  description = "Internal IP of the NAT Gateway, needs to be the default GW for 
all VMs" 
} 
 
output "control-plane-ips" { 
  value = [for control in ionoscloud_server.control : 
          format( 
          "Name: %s | IP: %s", 
          control.name, 
          control.primary_ip 
          )] 
  description = "IP address for the VM, needed for static IP config in 
agent-config.yaml" 
} 
 
output "compute-node-ips" { 
  value = [for compute in ionoscloud_server.compute : 
          format( 
          "Name: %s | IP: %s", 
          compute.name, 
          compute.primary_ip 
          )] 
  description = "IP address for the VM, needed for static IP config in 
agent-config.yaml" 
} 

 
●​ Create symbolic link to the variables.tf file created earlier: 

 

# ln -s $HOME/variables.tf $HOME/02-provision-infrastructure/variables.tf 

 

37 



None

None

 

●​ Edit the variables.tf file and set the following details for “Stage 2”: 
○​ Datacenter ID 
○​ CIDR for the internal LAN in the  

●​ Apply “Terraform”: 
 

# cd $HOME/02-provision-infrastructure/ 
# terraform init 
# terraform plan 
# terraform apply 

 
●​ The “Terraform” Apply step should print the following output: 

 

compute-node-ips = [ 
  "Name: compute-0 | IP: 10.7.200.xx", 
  "Name: compute-1 | IP: 10.7.200.xx", 
] 
control-plane-ips = [ 
  "Name: control-0 | IP: 10.7.200.xx", 
  "Name: control-1 | IP: 10.7.200.xx", 
  "Name: control-2 | IP: 10.7.200.xx", 
] 
nat-gateway-internal-ip = tolist([ 
  "10.7.200.1", 
]) 

 

6.4.3 Provision IONOS Network Load Balancer for OpenShift 
The Managed Network Load Balancer (NLB) is a pre-configured IONOS VDC element that 
provides connection-based layer 4 load balancing features and functionality.  
To fulfill the OpenShift Load Balancing requirements outlined in Chapter 3.3.5, we are going to 
deploy the NLB with Terraform in this step. 
 
We can only configure the NLB forwarding rules once we have the “target” IP addresses of the 
Control-Plane and Worker Nodes from the previous step. 
 

●​ Create “Terraform” $HOME/03-configure-lb/main.tf with the following content: 
 

38 



None

 

# Configuring the provider for IONOS Cloud 
terraform { 
  required_providers { 
    ionoscloud = { 
      source  = "ionos-cloud/ionoscloud" 
      version = ">= 6.4.10" 
    } 
  } 
} 
 
# Setting LB IP locally 
locals { 
  internal_lb_ip = cidrhost(var.internal_lan_cidr, 5) 
} 
 
# LoadBalancer for API and Ingress starts here 
resource "ionoscloud_networkloadbalancer" "openshift" { 
  datacenter_id  = var.datacenter_id 
  name           = "Load Balancer for OpenShift API and Ingress" 
  listener_lan   = var.public_lan_id 
  target_lan     = var.internal_lan_id 
  ips            = [var.external_lb_ip] 
  lb_private_ips = ["${local.internal_lb_ip}/23"] 
} 
 
# Configuration of IONOS Network Loadbalancer Forwarding rules 
resource "ionoscloud_networkloadbalancer_forwardingrule" "api-ext" { 
  datacenter_id          = var.datacenter_id 
  networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id 
  name                   = "api-ext" 
  algorithm              = "ROUND_ROBIN" 
  protocol               = "TCP" 
  listener_ip            = var.external_lb_ip 
  listener_port          = "6443" 
  health_check { 
    target_timeout = 30000 
  } 
 
  dynamic "targets" { 
    for_each = var.control-ips 
    content { 
      ip     = targets.value 
      port   = "6443" 
      weight = "1" 

39 



 

      health_check { 
        check          = true 
        check_interval = 10000 
        maintenance    = false 
      } 
    } 
  } 
} 
 
resource "ionoscloud_networkloadbalancer_forwardingrule" "api-int" { 
  datacenter_id          = var.datacenter_id 
  networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id 
  name                   = "api-int" 
  algorithm              = "ROUND_ROBIN" 
  protocol               = "TCP" 
  listener_ip            = local.internal_lb_ip 
  listener_port          = "6443" 
  health_check { 
    target_timeout = 30000 
  } 
 
  dynamic "targets" { 
    for_each = var.control-ips 
    content { 
      ip     = targets.value 
      port   = "6443" 
      weight = "1" 
      health_check { 
        check          = true 
        check_interval = 10000 
        maintenance    = false 
      } 
    } 
  } 
} 
 
resource "ionoscloud_networkloadbalancer_forwardingrule" "ignition-int" { 
  datacenter_id          = var.datacenter_id 
  networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id 
  name                   = "ignition-int" 
  algorithm              = "ROUND_ROBIN" 
  protocol               = "TCP" 
  listener_ip            = local.internal_lb_ip 
  listener_port          = "22623" 

40 



 

  health_check { 
    target_timeout = 30000 
  } 
 
  dynamic "targets" { 
    for_each = var.control-ips 
    content { 
      ip     = targets.value 
      port   = "22623" 
      weight = "1" 
      health_check { 
        check          = true 
        check_interval = 10000 
        maintenance    = false 
      } 
    } 
  } 
} 
 
resource "ionoscloud_networkloadbalancer_forwardingrule" "ingress80" { 
  datacenter_id          = var.datacenter_id 
  networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id 
  name                   = "api" 
  algorithm              = "SOURCE_IP" 
  protocol               = "TCP" 
  listener_ip            = var.external_lb_ip 
  listener_port          = "80" 
  health_check { 
    target_timeout = 30000 
  } 
 
  dynamic "targets" { 
    for_each = var.compute-ips 
    content { 
      ip     = targets.value 
      port   = "80" 
      weight = "1" 
      health_check { 
        check          = true 
        check_interval = 10000 
        maintenance    = false 
      } 
    } 
  } 

41 



None

 

} 
 
resource "ionoscloud_networkloadbalancer_forwardingrule" "ingress443" { 
  datacenter_id          = var.datacenter_id 
  networkloadbalancer_id = ionoscloud_networkloadbalancer.openshift.id 
  name                   = "api" 
  algorithm              = "SOURCE_IP" 
  protocol               = "TCP" 
  listener_ip            = var.external_lb_ip 
  listener_port          = "443" 
  health_check { 
    target_timeout = 30000 
  } 
 
  dynamic "targets" { 
    for_each = var.compute-ips 
    content { 
      ip     = targets.value 
      port   = "443" 
      weight = "1" 
      health_check { 
        check          = true 
        check_interval = 10000 
        maintenance    = false 
      } 
    } 
  } 
} 
 
 

 
●​ Create “Terraform” $HOME/03-configure-lb/outputs.tf with the following 

content: 
 

output "nlb-internal-ip" { 
  value = ionoscloud_networkloadbalancer.openshift.lb_private_ips 
  description = "IP address of the NLB in private/internal network, used for 
api-int DNS entry" 
} 

 
●​ Create symbolic link to the variables.tf file created earlier: 

42 



None

None

None

 

 

# ln -s $HOME/variables.tf $HOME/03-configure-lb/variables.tf 

 
●​ Edit the variables.tf file and set the following details for “Stage 3”: 

○​ External Loadbalancer IP as reserved in IONOS IP Management 
○​ Control-Plane Node IPs 
○​ Computer Node IPs 

 
●​ Apply “Terraform”: 

 

# cd $HOME/03-configure-lb/ 
# terraform init 
# terraform plan 
# terraform apply 

 
●​ The “Terraform” Apply step should print the following output: 

 

nlb-internal-ip = tolist([ 
  "10.7.200.5", 
]) 

​  

6.4.4 Create DNS Domain or Subdomain 
In OpenShift Container Platform, DNS configuration for the API Server, Application Wildcard 
Ingress and the Nodes in the Cluster is required. 
 
This deployment guide assumes that you have a DNS domain registered with your Registrar. 
Within the DNS configuration at your Registrar, configure a subdomain which is using the “NS” 
record type to point to the IONOS DNS Nameservers. 
 
With IONOS Cloud Domain Name System (DNS), you can publish your domain names to the 
global DNS. The feature is built around the concept of DNS zones and records that can be 
managed through both the Cloud DNS API and the Data Center Designer (DCD). 
 
To create a zone, follow these steps: 

43 



 

 
●​ In the DCD, go to Menu (left upper corner) > Network Services > Cloud DNS 

 

 
●​ Click Create > Primary Zone in the Public Zones tab to open the Create Primary 

Zone window. 
●​ Enter the following details in the Create Primary Zone window: 

○​ Enabled/Disabled: Set the status to either Enabled (Default) or Disabled. 
○​ Name: Enter an appropriate name for your DNS zone, here 

ocp.ionos.yourdomain.de 
○​ Description (Optional): Enter an appropriate description for your DNS zone. 

●​ Click Create Zone to create the DNS zone. 
 
More detailed information about this step can be found in the IONOS cloud documentation. 
 

44 

https://docs.ionos.com/cloud/network-services/cloud-dns/dcd-how-tos/manage-dns-zone


 

6.4.5 Create DNS records 
As we are going to install a High Available OpenShift Container Platform Cluster (see Chapter 
2.3), we need DNS records for three Control Plane Nodes and two Compute Nodes. 
Additionally, we will need DNS records for the Kubernetes API and the Application Ingress 
traffic. 
 
To create DNS records in the DNS Zone we configured in the previous chapter: 
 

●​ In the DCD, go to Menu > Network Services > Cloud DNS > Public Zones tab 
●​ Select the appropriate zone in the DNS ZONES column to create records. Alternatively, 

click Details & Records in the ACTIONS column. 
●​ Click Create Record in the Details & Records window. 
●​ Enter the following details in the Create Record window: 

○​ Enabled/Disabled: Set it to Enabled (by default) 
○​ Name: Enter an appropriate name for the DNS record, see the list below 
○​ TTL: Enter an appropriate Time-To-Live (TTL) setting in seconds for your DNS 

record. Leave the default value at 3600 seconds. 
○​ Type: Select record types: A 
○​ Content: Enter the appropriate IPv4 address; see the list below 
○​ Preview: Ensure that the details of the record to be created are accurate.  

 
 

FQDN IPv4 Address 

control-0.ocp.ionos.yourdomain.de 10.7.200.xx 

control-1.ocp.ionos.yourdomain.de 10.7.200.xx 

control-2.ocp.ionos.yourdomain.de 10.7.200.xx 

compute-0.ocp.ionos.yourdomain.de 10.7.200.xx 

compute-1.ocp.ionos.yourdomain.de 10.7.200.xx 

api-int.ocp.ionos.yourdomain.de 10.7.200.5 (internal Load-Balancer IP) 

api.ocp.ionos.yourdomain.de Public Load-Balancer IP from Chapter 4.4 

*.apps.ocp.ionos.yourdomain.de Public Load-Balancer IP from Chapter 4.4 

 
More details about IONOS Cloud-DNS and DNS record management can be found in the 
IONOS documentation. 
 
Note: 
Copy and paste the nameservers of the new created zone to configure the domain at your 
Registrar. New DNS zones are currently not automatically registered.  

45 

https://docs.ionos.com/cloud/network-services/cloud-dns/dcd-how-tos/manage-dns-record


None

None

 

6.4.6 Set the Availability Zone for the Dedicated Core Servers in DCD 
The previous step created all the needed VMs within the IONOS Cloud VDC. From an high 
availability perspective, it’s important to distribute the VMs into different zones. 
The IONOS Datacenter “Frankfurt am Main” we are using within this Deployment Guide has two 
Availability Zones (AZ) called “Zone_1” and “Zone_2”. By default, the IONOS VMs created 
previously are configured with zone “Auto”. 
To improve reliability and to configure OpenShift Container Platform zone awareness in a later 
step, it’s recommended to distribute the VMs between those two available zones manually. 
Please login to the IONOS Data Center Designer (DCD) as described in Chapter 4.1 and check 
with the IONOS documentation about how to configure a specific availability zone for every VM. 
 
Remember to “Provision Changes” and note down the VM / AZ placement. 
  

6.4.7 Create the Agent-based Installer ISO image 
●​ Log in to the “Management” VM, as described in Chapter 6.3.1 in more detail. 
●​ Create directories to store and backup the configuration files: 

 

# mkdir $HOME/ocp-install $HOME/install-backup 

 
●​ Create the install-config.yaml file by running the following command:   

 

# cat << EOF > $HOME/ocp-install/install-config.yaml 
apiVersion: v1 
baseDomain: ionos.yourdomain.de 
compute: 
- architecture: amd64 
  hyperthreading: Enabled 
  name: worker 
  replicas: 2 
controlPlane: 
  architecture: amd64 
  hyperthreading: Enabled 
  name: master 
  replicas: 3 
metadata: 
  name: ocp 
networking: 

46 

https://docs.ionos.com/cloud/compute-services/compute-engine/compute-engine-faq#how-do-i-change-the-availability-zone-1


None

 

  clusterNetwork: 
  - cidr: 10.128.0.0/14 
    hostPrefix: 23 
  machineNetwork: 
  - cidr: 10.7.200.0/23    <<<<<---------------- !!!!!!!! 
  networkType: OVNKubernetes 
  serviceNetwork: 
  - 172.30.0.0/16 
platform: 
  external: 
    platformName: IONOS 
sshKey: 'SSH pub key'   <<<<<---------------------------- !!!!!!!!!!!!!!!!!! 
pullSecret: 'your Red Hat Pull Secret' <<<<<------------- !!!!!!!!!!!!!!!!!! 
EOF 

 
●​ Edit the install-config.yaml file: 

○​ Change the sshKey with the SSH Public Key you prepared in Chapter 3.5.2 
named “ocp-admin” 

○​ Change the pullSecret with your Red Hat Pull Secret obtained within Chapter 
3.5.1 

○​ Change the machineNetwork CIDR to your internal network address, see 
Chapter 6.3.1 
 

●​ Create the agent-config.yaml file by running the following command: 
 

# cat << EOF > $HOME/ocp-install/agent-config.yaml 
apiVersion: v1beta1 
kind: AgentConfig 
metadata: 
  name: ocp  <<<<<------------ !!!!!!!!!! cluster id configured in the DNS 
# All fields are optional 
rendezvousIP: (replace with IP of control-0 VM, i.e. 10.7.200.12) 
bootArtifactsBaseURL: (replace with internal IP of Management VM, i.e. 
http://10.7.200.11) 
hosts: 
  - hostname: control-0 
    role: master 
    interfaces: 
      - macAddress: 02:01:e1:40:fe:50 
        name: ens6 

47 



 

    networkConfig: 
      interfaces: 
        - name: ens6 
          type: ethernet 
          state: up 
          mac-address: 02:01:e1:40:fe:50 
          ipv4: 
            enabled: true 
            dhcp: false 
            address: 
              - ip: 10.7.200.12 
                prefix-length: 23 
      dns-resolver: 
        config: 
          server: 
            - 212.227.123.16 
            - 212.227.123.17 
      routes: 
        config: 
          - destination: 0.0.0.0/0 
            next-hop-address: 10.7.220.1 
            next-hop-interface: ens6 
            table-id: 254 
  - hostname: control-1 
    role: master 
    interfaces: 
      - macAddress: 02:01:e1:40:fe:51 
        name: ens6 
    networkConfig: 
      interfaces: 
        - name: ens6 
          type: ethernet 
          state: up 
          mac-address: 02:01:e1:40:fe:51 
          ipv4: 
            enabled: true 
            dhcp: false 
            address: 
              - ip: 10.7.200.13 
                prefix-length: 23 
      dns-resolver: 
        config: 
          server: 
            - 212.227.123.16 

48 



 

            - 212.227.123.17 
      routes: 
        config: 
          - destination: 0.0.0.0/0 
            next-hop-address: 10.7.200.1 
            next-hop-interface: ens6 
            table-id: 254 
  - hostname: control-2 
    role: master 
    interfaces: 
      - macAddress: 02:01:e1:40:fe:52 
        name: ens6 
    networkConfig: 
      interfaces: 
        - name: ens6 
          type: ethernet 
          state: up 
          mac-address: 02:01:e1:40:fe:52 
          ipv4: 
            enabled: true 
            dhcp: false 
            address: 
              - ip: 10.7.200.14 
                prefix-length: 23 
      dns-resolver: 
        config: 
          server: 
            - 212.227.123.16 
            - 212.227.123.17 
      routes: 
        config: 
          - destination: 0.0.0.0/0 
            next-hop-address: 10.7.200.1 
            next-hop-interface: ens6 
            table-id: 254 
  - hostname: compute-0 
    role: worker 
    interfaces: 
      - macAddress: 02:01:e1:50:fe:50 
        name: ens6 
    networkConfig: 
      interfaces: 
        - name: ens6 
          type: ethernet 

49 



 

          state: up 
          mac-address: 02:01:e1:50:fe:50 
          ipv4: 
            enabled: true 
            dhcp: false 
            address: 
              - ip: 10.7.200.15 
                prefix-length: 23 
      dns-resolver: 
        config: 
          server: 
            - 212.227.123.16 
            - 212.227.123.17 
      routes: 
        config: 
          - destination: 0.0.0.0/0 
            next-hop-address: 10.7.200.1 
            next-hop-interface: ens6 
            table-id: 254 
  - hostname: compute-1 
    role: worker 
    interfaces: 
      - macAddress: 02:01:e1:50:fe:51 
        name: ens6 
    networkConfig: 
      interfaces: 
        - name: ens6 
          type: ethernet 
          state: up 
          mac-address: 02:01:e1:50:fe:51 
          ipv4: 
            enabled: true 
            dhcp: false 
            address: 
              - ip: 10.7.200.16 
                prefix-length: 23 
      dns-resolver: 
        config: 
          server: 
            - 212.227.123.16 
            - 212.227.123.17 
      routes: 
        config: 
          - destination: 0.0.0.0/0 

50 



None

 

            next-hop-address: 10.7.200.1 
            next-hop-interface: ens6 
            table-id: 254 
EOF 

 
●​ Important notes: 

○​ we are using exactly the same mac-addresses as in Terraform when creating 
the VMs in order, so we know which VM has which MAC address on the interface 

○​ For every host defined in the AgentConfig file, we are setting a static IP 
configuration: IP address to the same the IONOS DHCP gave back in Chapter 
6.4.2, setting DNS IP addresses to the IONOS resolvers, setting the default route 
to the internal IP address of the IONOS NAT Gateway configured earlier. 

○​ rendezvousIP to one of the Control Plane Nodes IPs 
○​ bootArtifactsBaseURL to the Apache Http Server running on the 

“Management” VM and later providing the Red Hat CoreOS rootfs-image 
 

●​ Prepare additional OpenShift Manifests to be included in the installation 
 
At the point of writing this Deployment Guide, OpenShift Container Platform is not 
correctly enabling the SystemD nodeip-configuration.service after the 
installation. This will lead to a missing “node-ip” configuration file for the Kubelet. 
A reasonable workaround is to provide a custom MachineConfig file to the 
openshift-installer: 

  

# mkdir $HOME/ocp-install/openshift 
# cat << EOF > 
$HOME/ocp-install/openshift/99-enable-nodeip-custom-config-master.yaml 
apiVersion: machineconfiguration.openshift.io/v1 
kind: MachineConfig 
metadata: 
  labels: 
    machineconfiguration.openshift.io/role: master 
  name: 99-enable-nodeip-custom-config-master 
spec: 
  config: 
    ignition: 
      version: 3.4.0 
    systemd: 
      units: 

51 

https://docs.ionos.com/cloud/network-services/vdc-networking/networks-faq#do-you-have-a-dns-resolver


None

None

 

        - name: nodeip-configuration.service 
          enabled: true 
EOF 
 
# cat << EOF > 
$HOME/ocp-install/openshift/99-enable-nodeip-custom-config-worker.yaml 
apiVersion: machineconfiguration.openshift.io/v1 
kind: MachineConfig 
metadata: 
  labels: 
    machineconfiguration.openshift.io/role: worker 
  name: 99-enable-nodeip-custom-config-worker 
spec: 
  config: 
    ignition: 
      version: 3.4.0 
    systemd: 
      units: 
        - name: nodeip-configuration.service 
          enabled: true 
EOF 

 
 

●​ As the openshift-install tooling is “consuming” the configuration files, it is 
recommended to back them up: 

 

# cp $HOME/ocp-install/*-config.yaml $HOME/install-backup/  

 
●​ Create the agent image by running the following command: 

 

# openshift-install --dir $HOME/ocp-install agent create image 
INFO Configuration has 3 master replicas and 2 worker replicas 
INFO The rendezvous host IP (node0 IP) is 10.7.220.12 
INFO Extracting base ISO from release payload 
INFO Verifying cached file 
INFO Using cached Base ISO /root/.cache/agent/image_cache/coreos-x86_64.iso 
INFO Consuming Extra Manifests from target directory 

52 



None

 

INFO Consuming Agent Config from target directory 
INFO Consuming Install Config from target directory 
INFO RootFS file created in: boot-artifacts. Upload it at 
http://10.7.200.11/agent.x86_64-rootfs.img 
INFO Generated minimal ISO at agent.x86_64.iso 
INFO When using External oci platform, always make sure CCM manifests were 
added in the openshift directory. 

 
●​ Inspecting the $HOME/ocp-install directory, we can see the following files: 

 

# tree -h 
. 
├── [ 115M]  agent.x86_64.iso 
├── [   50]  auth 
│   ├── [   23]  kubeadmin-password 
│   └── [ 8.7K]  kubeconfig 
├── [   37]  boot-artifacts 
│   └── [ 1.1G]  agent.x86_64-rootfs.img 
└── [   11]  rendezvousIP 
 
2 directories, 5 files 

 
●​ The “agent.x86_64.iso” file now contains the bootable image we will use to 

provision the VMs prepared previously with “Terraform”. 
To have the ISO image available for provisioning, we need to upload the ISO image to 
the appropriate IONOS data center via FTPS. 
As we are installing in the “Germany/Frankfurt am Main” data center, you need to use 
the following location: ftps://ftp-fra-2.ionos.com/hdd-images 
More details about uploading can be found in the IONOS Cloud documentation. 
 

●​ After the upload finished, set the vertical scaling flags like Scale CPU, Scale RAM to Hot 
Plug, Hotplug VirtIO to Hot Plug and Unplug and  UEFI compatibility in the Manage 
Images and Snapshots window for that agent ISO image.​

53 

ftp://ftp-txl.ionos.com/iso-images


None

 

​

 
 

●​ The agent.x86_64-rootfs.img in the boot-artifacts directory contains the 
Red Hat CoreOS rootfs image, which is pulled by the init-ramdisk contained in the 
agent.x86_64.iso image. 
As the IONOS DHCP is not setting a default gateway nor DNS nameserver IPs for 
private networks, we need to have the rootfs image available within the private network. 
For this reason, we already installed and enabled the Apache Http Server in Chapter 
6.3.4. 
Please copy the root-fs image to the webservers serving directory: 

 

# cp $HOME/ocp-install/boot-artifacts/agent.x86_64-rootfs.img /var/www/html/ 

 
 

6.4.8 Attach “Minimal ISO” as CDROM drive and set boot order 
During Chapter 6.4.2, we provisioned IONOS Dedicated Core Servers with “empty” SSD disk 
drives. At this point, we couldn’t attach a CD-ROM drive for booting because the ISO Image for 
the Agent-based OpenShift Container Platform installation did not exist yet. 
 
As we now have the ISO boot image (agent.x86_64.iso) prepared and uploaded to the 
IONOS FTPS server, we can configure a CD-ROM device. 
 
The Deployment Guide is currently missing a “Terraform” automation for this part, so we are 
using the Data Center Designer (DCD) at this stage once again: 
 

●​ In the DCD, select one of the OpenShift VMs in your datacenter 

54 



None

 

●​ Navigate to the Inspector pane on the right side and select the Storage tab 
●​ Click Add CD-ROM and select the agent.x86_64.iso image from your own images 
●​ Uncheck the “Boot from Device” checkbox 
●​ Set the already existing SSD device (named i.e. control-1-storage) as Boot Device 
●​ Repeat the same for all OpenShift VMs 

 
As described in the Agent-based Installer Workflow (see Chapter 6.1.3), this boot device 
settings helps to eliminate the need to change the boot order or remove the CD-ROM device 
after the Red Hat CoreOS image is written to disk and the VM is automatically rebooted for the 
second phase of the installation. 
 
Press Provision Changes in the DCD to reboot all OpenShift VMs with the Minimal ISO image 
and to start the OpenShift deployment. 

6.4.9 Monitor the OpenShift Container Platform Installation progress 
With the previous step in rebooting the IONOS Dedicated Core Server VMs, the Minimal ISO 
will be booted and the OpenShift Container Platform installation will start. 
 
To monitor the installation progress, run the following commands and monitor the output on the 
“Management” Server: 
 

●​ Monitoring the first part of the installation: 
 

# openshift-install agent wait-for bootstrap-complete --log-level info 
INFO Waiting for cluster install to initialize. Sleeping for 30 seconds 
INFO Cluster is not ready for install. Check validations 
WARNING Cluster validation: The cluster has hosts that are not ready to 
install. 
INFO Cluster is ready for install 
INFO Cluster validation: All hosts in the cluster are ready to install. 
INFO Host control-1 validation: Host has connectivity to the majority of hosts 
in the cluster 
INFO Host control-0 validation: Host has connectivity to the majority of hosts 
in the cluster 
INFO Host control-2 validation: Host has connectivity to the majority of hosts 
in the cluster 
INFO Host compute-3 validation: Host has connectivity to the majority of hosts 
in the cluster 
INFO Host compute-0 validation: Host has connectivity to the majority of hosts 
in the cluster 
INFO Host compute-1 validation: Host has connectivity to the majority of hosts 
in the cluster 

55 



None

 

INFO Host compute-2 validation: Host has connectivity to the majority of hosts 
in the cluster 
INFO Host control-2: updated status from insufficient to known (Host is ready 
to be installed) 
INFO Preparing cluster for installation 
INFO Cluster installation in progress 
INFO Host control-1: updated status from preparing-successful to installing 
(Installation is in progress) 
INFO Host: control-0, reached installation stage Writing image to disk: 39% 
INFO Host: compute-0, reached installation stage Writing image to disk: 75% 
INFO Host: compute-0, reached installation stage Writing image to disk: 100% 
INFO Host: compute-0, reached installation stage Waiting for control plane 
INFO Bootstrap Kube API Initialized 
INFO Host: compute-2, reached installation stage Rebooting 
INFO Host: compute-3, reached installation stage Rebooting 
INFO Host: compute-0, reached installation stage Rebooting 
INFO Host: control-0, reached installation stage Waiting for bootkube: waiting 
for ETCD bootstrap to be complete 
INFO Host: compute-3, reached installation stage Joined 
INFO Bootstrap configMap status is complete 
INFO Bootstrap is complete 
INFO cluster bootstrap is complete 
#  

 
●​ Once the Cluster bootstrap is complete, the command exits and we can monitor the 

installation process to complete: 
 

# openshift-install agent wait-for install-complete --log-level info 
INFO Bootstrap Kube API Initialized 
INFO Bootstrap configMap status is complete 
INFO Bootstrap is complete 
INFO cluster bootstrap is complete 
INFO Cluster is installed 
INFO Install complete! 
INFO To access the cluster as the system:admin user when using 'oc', run 
INFO     export KUBECONFIG=/root/ocp-install/auth/kubeconfig 
INFO Access the OpenShift web-console here: 
https://console-openshift-console.apps.ocp.ionos.yourdomain.de 
INFO Login to the console with user: "kubeadmin", and password: 
"xxxx-xxxxx-xxxxx-xxxxx" 
 

56 



None

 

 
​ At this point OpenShift Container Platform is successfully installed on IONOS  

Cloud. 
 

6.4.10 Post-install configuration 
In a previous step (see Chapter 6.4.6) we distributed the OpenShift Container Platform Nodes to 
different Availibility Zones (AZ) in the IONOS datacenter location. 
 
However, OpenShift Container Platfom can not detect the zone location of the individual Nodes, 
as the VMs are not exposing this and we currently have no deeper integration into the IONOS 
Cloud to check for metadata. 
 
To add scheduling and high-availability awareness to OpenShift Container Platform, please use 
the following command to set the AZ accordingly: 
 
 

# oc label node control-0 topology.kubernetes.io/zone=ZONE_1 
# oc label node control-1 topology.kubernetes.io/zone=ZONE_2 
# oc label node control-2 topology.kubernetes.io/zone=ZONE_1 
# oc label node compute-0 topology.kubernetes.io/zone=ZONE_1 
# oc label node compute-1 topology.kubernetes.io/zone=ZONE_2 
 

 
 

 

 

57 



None

None

None

 

7 Day 2 operations 

7.1 Configure persistent storage 
To use Block Storage volumes with OpenShift Container Platform, we need to provision and 
configure the IONOS Cloud Blockstorage CSI driver version >= 0.6.0. 
This Container Storage Interface (CSI) driver plugin communicates with the IONOS Cloud API 
to manage storage. The visibility and permissions it has depend on the authentication token it is 
given. 
 
7.1.1 Prerequisites 

●​ Helm 3+ available 
●​ IONOS API Token 

○​ Please review Chapter 4.2 about how to create IONOS API tokens. It is 
recommended creating a dedicated token for the CSI driver, potentially using a 
higher TTL as otherwise we need to change the token frequently 

 
7.1.2 Create a secret with the IONOS API Token for the CSI driver 
The secret needs to be named csi-secret and the key needs to be named token: 
 

$ oc -n kube-system create secret generic csi-secret --from-literal 
token=<your-token> 

 
7.1.3 Create IONOS CSI Node Server config file on all Nodes 
The CSI node server expects the file /etc/ie-csi/cfg.json to exist on every VM. The file 
must contain the datacenter ID of the VM in the following format: 
 

{"datacenter-id": "<DATACENTER_ID>"} 

 
Use base64 to encode the above string and insert it in the MachineConfig manifests for 
OpenShift Container Platform Worker Nodes: 
 

$ cat 99-ionos-csi-config-worker.yaml 
apiVersion: machineconfiguration.openshift.io/v1 
kind: MachineConfig 

58 

https://github.com/ionos-cloud/ionoscloud-blockstorage-csi-driver


None

None

 

metadata: 
  name: 99-ionos-csi-config-worker 
  labels: 
    machineconfiguration.openshift.io/role: worker 
spec: 
  config: 
    ignition: 
      version: 3.4.0 
    storage: 
      files: 
        - path: /etc/ie-csi/cfg.json 
          mode: 0644 
          contents: 
            source: 
data:text/plain;charset=utf-8;base64,replace-me-with-BASE64-encoded-string 

 
Apply the MachineConfig: 
 

$ oc apply -f 99-ionos-csi-config-worker.yaml 

 
Once the Machine Config Pools are ready again, deploy the IONOS CSI driver with helm: 
 

$ helm install -n kube-system ionoscloud-blockstorage-csi-driver \ 
    oci://ghcr.io/ionos-cloud/helm-charts/ionoscloud-blockstorage-csi-driver \ 
    --set tokenSecretName=csi-secret --set init.selinux.enabled=true 

 

7.2 Configuring Certificates for Ingress and API 

7.2.1 Replacing the default Ingress Certificate 
Applications are usually exposed at 
<route_name>.apps.<cluster_name>.<base_domain>. The <cluster_name> and 
<base_domain> come from the installation config file. <route_name> is the host field of the 
route, if specified, or the route name. For example, 

59 



 

hello-openshift-default.apps.username.devcluster.openshift.com. 
hello-openshift is the name of the route and the route is in the default namespace.  
You might want clients to access the applications without the need to distribute the 
cluster-managed CA certificates to the clients. The administrator must set a custom default 
certificate when serving application content. 
 
By default, OpenShift Container Platform uses the Ingress Operator to create an internal CA 
and issue a wildcard certificate that is valid for applications under the .apps sub-domain. Both 
the web console and CLI use this certificate as well. 
 
The internal infrastructure CA certificates are self-signed. While this process might be perceived 
as bad practice by some security or PKI teams, any risk here is minimal. The only clients that 
implicitly trust these certificates are other components within the cluster. Replacing the default 
wildcard certificate with one that is issued by a public CA already included in the CA bundle as 
provided by the container userspace allows external clients to connect securely to applications 
running under the .apps sub-domain. 
 
To replace the default ingress certificate for all applications under the .apps subdomain, please 
follow the detailed steps and prerequisites outlined in the OpenShift Container Platform 
documentation. 
 
If not already specified during the initial OpenShift Container Platform installation, please 
remember to also update the custom Certificate Authority (CA) to the “CA Bundle”. Fore more 
details, check the OpenShift Container Platform documentation 
 

7.2.2 Replacing the default API Server Certificate 
The API server is accessible by clients external to the cluster at 
api.<cluster_name>.<base_domain>. You might want clients to access the API server at 
a different hostname or without the need to distribute the cluster-managed certificate authority 
(CA) certificates to the clients.  
 
The default API server certificate is issued by an internal OpenShift Container Platform cluster 
CA. Clients outside of the cluster will not be able to verify the API server’s certificate by default. 
This certificate can be replaced by one that is issued by a CA that clients trust. 
 
The user-provided certificates must be provided in a kubernetes.io/tls type Secret in 
the openshift-config namespace. Update the API server cluster configuration, the 
apiserver/cluster resource, to enable the use of the user-provided certificate. 
 
To replace the default API Server certificate, please follow the detailed steps and prerequisites 
outlined in the OpenShift Container Platform documentation. 

60 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/networking/index#nw-ingress-setting-a-custom-default-certificate_configuring-ingress
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/security_and_compliance/index#updating-ca-bundle
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/security_and_compliance/index#customize-certificates-api-add-named_api-server-certificates


None

 

7.3 Configure OpenShift Image Registry 
OpenShift Container Platform can build images from your source code, deploy them, and 
manage their lifecycle. It provides an internal, integrated container image registry that can be 
deployed in your OpenShift Container Platform environment to locally manage images. 
 
Due to the fact that we are using “Platform: External” for the OpenShift Container 
Platform installation, there is no default integration with the specific storage offerings on IONOS 
cloud. 
 
For this reason, the OpenShift Image Registry Operator bootstraps itself as Removed, which 
means that there is no OpenShift internal Image Registry configured at all. 
 
A scaled OpenShift image registry involves running multiple replicas of the registry to improve 
performance, reliability, and availability. 
By scaling the OpenShift image registry, you can ensure that your cluster can efficiently manage 
and distribute container images, supporting large-scale deployments and improving overall 
system reliability.  
 
According to the recommendations for the Registry storage in the documentation, it is needed to 
use object storage for the scaled OpenShift Image Registry. Please refer to Chapter 3.2.4 to 
learn more about IONOS object storage. 
 
The OpenShift Container Platform documentation includes a detailed description about how to 
configure and set up the OpenShift Image Registry, please follow the steps in the Chapter 
“Configuring the registry for bare metal”. 
 
To set up and create an object storage bucket on IONOS Cloud, please follow the steps outlined 
in the IONOS documentation. 
 
After creating the IONOS Object Storage bucket, you need to create an Object Storage Key as 
outlined in the IONOS documentation. 
 
Once we have the “Access Key” and the “Secret Key”, we are going to create the needed 
OpenShift Secret in the openshift-image-registry namespace: 
  

$ oc create secret generic image-registry-private-configuration-user 
--from-literal=REGISTRY_STORAGE_S3_ACCESSKEY=your-key-here \ 
--from-literal=REGISTRY_STORAGE_S3_SECRETKEY=your-key-here \ 
--namespace openshift-image-registry 
 

 

61 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#recommended-configurable-storage-technology-scaled-registry_persistent-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/registry/index#configuring-registry-storage-baremetal
https://docs.ionos.com/cloud/storage-and-backup/ionos-object-storage/get-started/create-bucket
https://docs.ionos.com/cloud/storage-and-backup/ionos-object-storage/get-started/generate-key


None

 

Now we need to change the OpenShift Image Registry configuration by editing with oc edit: 
 

$ oc edit config.imageregistry.operator.openshift.io 
 
Example Manifest, change spec.managementState, spec.replicas and spec.storage: 
 
apiVersion: imageregistry.operator.openshift.io/v1 
kind: Config 
metadata: 
  name: cluster 
spec: 
  logLevel: Normal 
  managementState: Managed 
  operatorLogLevel: Normal 
  proxy: {} 
  replicas: 2 
  rolloutStrategy: RollingUpdate 
  storage: 
    s3: 
      bucket: openshift-registry 
      region: eu-central-3 
      regionEndpoint: https://s3.eu-central-3.ionoscloud.com 
  unsupportedConfigOverrides: null 
 

 

7.4 Configure OpenShift Monitoring 
When configuring OpenShift monitoring, using persistent storage is highly recommended. 
Persistent storage ensures that your metrics and alerting data are protected from loss when 
pods are restarted or recreated. This is crucial for maintaining historical data and ensuring 
continuity in monitoring and alerting systems. 
 
To implement persistent storage, you need to configure Persistent Volume Claims (PVCs) for 
monitoring components and ensure sufficient local storage is available. 
 
OpenShift Container Platform Monitoring is using Prometheus databases for storing metrics and 
alerts. The recommended storage technology for Prometheus is block storage. 
 
Within the OpenShift Container Platform documentation, you will find some numbers regarding 
the required storage capacity for different Cluster sizes. Keep in mind that by default, 
Prometheus retains metrics for 15 days. You can modify the retention time for the Prometheus 
instance to change when the data is deleted. You can also set the maximum amount of disk 

62 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#recommended-configurable-storage-technology_persistent-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#prometheus-database-storage-requirements_recommended-infrastructure-practices


 

space the retained metrics data uses. More details about modifying retention time and size is 
available in the documentation as well. 
 
The main steps to configure persistent storage for OpenShift Container Platform Monitoring are: 
 

●​ Edit ConfigMap: 
○​ Modify cluster-monitoring-config in the openshift-monitoring 

namespace. 
●​ Add PVC Configuration: 

○​ Specify volumeClaimTemplate for each component (e.g., Prometheus, 
Alertmanager) with storage class and size. 

●​ Ensure PVs Are Available: 
○​ Have sufficient PVs for each replica. 

●​ Verify Configuration: 
○​ Check that pods use the specified storage after applying changes. 

 
Please refer to the OpenShift Container Platform documentation for detailed instructions. 
 

7.5 Scaling the OpenShift Cluster 
OpenShift Container Platform is a highly scalable solution and Red Hat is publishing some 
numbers about the tested Cluster maximums in the documentation. 
 
However, the environment, application workload and infrastructure are never the same and it’s 
hard to compare with any general numbers. Scaling up, preparing for more workload and 
keeping a decent end-customer performance needs proper planning and testing.  
 
The OpenShift Container Platform documentation provides a whole chapter about “Scalability 
and performance”, covering a broad number of different topics. It is recommended to get familiar 
with those topics already in the planning and design phase. 
 
As a general guidance, it is very important to keep the Control Plane Node size inline with the 
overall Cluster growth. The node sizing varies depending on the number of Worker Nodes and 
object counts in the cluster. It also depends on whether the objects are actively being created on 
the cluster. The “Control Plane Node sizing” chapter in the documentation has some numbers. 
 

7.5.1 Adding Worker Nodes to the Cluster 
Starting with OpenShift Container Platform 4.17, you can add Worker Nodes by using the oc 
adm node-image command to generate an ISO image, which can then be used to boot one or 
more nodes in your target cluster. 
 

63 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/monitoring/index#modifying-retention-time-and-size-for-prometheus-metrics-data_storing-and-recording-data
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/monitoring/index#configuring-persistent-storage_storing-and-recording-data
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#cluster-maximums-major-releases_object-limits
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/scalability_and_performance/index#master-node-sizing_recommended-control-plane-practices


 

With this platform-agnostic approach, you can add one or more Nodes at a time while 
customizing each Node with more complex configurations, such as static network configuration. 
Any required configurations that are not specified during ISO generation are retrieved from the 
target cluster and applied to the new nodes. 
 
Preflight validation checks are also performed when booting the ISO image to inform you of 
failure-causing issues before you attempt to boot each node. 
 
Before running the oc adm node-image create command to generate the ISO image suitable for 
your OpenShift Container Platform Cluster, you need to prepare the VMs on IONOS cloud. 
Please refer to Chaper 6.4 about how to create the VM instances. 
 
The detailed steps needed to create the ISO image for one or more Nodes is outlined in the 
OpenShift Container Platform documentation. 

7.6 OpenShift Container Platform updates 

7.6.1 Understanding OpenShift updates 
OpenShift Container Platform updates are managed through the Cluster Version Operator 
(CVO) and the OpenShift Update Service (OSUS).  
The OSUS provides a graph of update possibilities based on release images, ensuring 
compatibility and safety. When an update is requested, the CVO retrieves the target release 
image and applies changes to the cluster.  
The Machine Config Operator (MCO) handles node updates by cordoning nodes, applying 
new configurations, and rebooting them. Updates are typically rolled out in stages, and only 
upgrading to newer versions is supported. The OSUS continuously checks for available updates 
and notifies administrators when new versions are ready. 
 
More details about OpenShift Container Platform updates as well as a collection of frequently 
asked questions can be found in the documentation. 
 
Attention: 
Before updating the OpenShift Cluster to any new z-stream or minor release, it is highly 
recommended to check the OpenShift Container Release Notes for the appropriate release and 
to work through the “Preparing to update a cluster” chapter in the documentation. 

7.6.2 Updating to the next OpenShift z-stream maintenance release 
To update OpenShift Container Platform to the latest z-stream release (i.e. 4.17.1 to 4.17.3) 
using the command line, follow these steps: 
 

●​ Install the Correct CLI Version: Ensure you have the OpenShift CLI (oc) version that 
matches your target update version. 

64 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/nodes/index#adding-node-iso
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/updating_clusters/index#understanding-openshift-updates
https://docs.redhat.com/documentation/openshift_container_platform/latest/html-single/release_notes/index
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/updating_clusters/index#preparing-to-update-a-cluster


 

●​ Log In with Admin Privileges: Log in to the cluster as a user with cluster-admin 
privileges. 

●​ Pause Machine Health Checks: Pause all MachineHealthCheck resources to 
prevent interference during the update. 

●​ Check Available Updates: Use oc adm upgrade to view available updates and note 
the desired version. 

●​ Apply the Update: Use oc adm upgrade --to-latest=true to update to the 
latest version or specify a version with --to <version>. 

●​ Monitor the Update: Use oc get clusterversion and oc get nodes to monitor 
the update progress until it completes. You can also use oc adm upgrade for 
monitoring.  

 
More details about the procedure can be found in the OpenShift Container Platform 
documentation.  

7.6.3 Upgrading to the next OpenShift minor release 
Important: 
When updating to a new OpenShift minor release (i.e. from 4.17 to 4.18), it is especially 
important to review and check the OpenShift Container Release Notes for the appropriate 
release. Consult the “Notable technical changes” and “Deprecated and removed features” 
sections carefully for the particular release.! 
 
To update OpenShift Container Platform to a more recent minor release (i.e. 4.17.20 to 4.18.5) 
using the command line, follow these steps: 
 

●​ Install the Correct CLI Version: Ensure you have the OpenShift CLI (oc) version that 
matches your target update version. 

●​ Log In with Admin Privileges: Log in to the cluster as a user with cluster-admin 
privileges. 

●​ Pause Machine Health Checks: Pause all MachineHealthCheck resources to 
prevent interference during the update. 

●​ Set the appropriate update channel: 
Use oc adm upgrade channel stable-4.18 to set the “stable-4.18” channel 

●​ Check Available Updates: Use oc adm upgrade to view available updates and note 
the desired version. 

●​ Apply the Update: Use oc adm upgrade --to-latest=true to update to the 
latest version or specify a version with --to <version>. 

●​ Monitor the Update: Use oc get clusterversion and oc get nodes to monitor 
the update progress until it completes. You can also use oc adm upgrade for 
monitoring.  

 

65 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/updating_clusters/index#update-upgrading-cli_updating-cluster-cli
https://docs.redhat.com/documentation/openshift_container_platform/latest/html-single/release_notes/index
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/release_notes/index#ocp-4-18-notable-technical-changes_release-notes
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/release_notes/index#ocp-4-18-deprecated-removed-features_release-notes


 

More details about the procedure can be found in the OpenShift Container Platform 
documentation.  

 

66 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/updating_clusters/index#update-upgrading-cli_updating-cluster-cli


 

8 Troubleshooting and Support 

8.1 Gathering log data from a failed Agent-based installation  
To gather log data about a failed Agent-based installation and to provide that for a support case, 
please refer to the OpenShift Container Platform documentation. 

8.2 General OpenShift Container Platform Troubleshooting 
The OpenShift Container Platform documentation includes a whole chapter about 
troubleshooting in different areas. Please consult the documentation to get started. 

67 

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_an_on-premise_cluster_with_the_agent-based_installer/installing-with-agent-basic#installing-ocp-agent-gather-log_installing-with-agent-basic
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/support/index#troubleshooting
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html-single/support/index#troubleshooting

	Red Hat OpenShift Container Platform 4.17 on IONOS Cloud: 
	Deployment Guide 
	 
	Table of Contents 
	1 Introduction 
	1.1 Purpose of the document 
	1.2 Introduction to IONOS Cloud 
	1.2.1 IONOS Cloud Compute Engine model  
	1.2.2 Data Center Designer 
	1.2.4 Virtual Data Center 

	1.3 Introduction to Red Hat OpenShift Container Platform 

	2 Red Hat OpenShift Container Platform installation details 
	2.1 Understanding OpenShift Container Platform Installation Method Differences 
	2.2 Understanding connected and disconnected environments 
	2.3 Understanding OpenShift Container Platform installation topologies  

	 
	3 IONOS Service and OpenShift Requirements 
	3.1 Description of relevant IONOS services 
	3.1.1 Compute (IONOS Dedicated Core Server) 
	3.1.2 Disk Storage (IONOS Cloud Block Storage) 
	3.1.3 Object Storage (IONOS Object Storage) 
	3.1.4 NAT Gateway (IONOS Managed NAT Gateway) 
	3.1.5 DNS (IONOS Cloud DNS) 
	3.1.6 LoadBalancer (IONOS Managed Network Load Balancer) 

	3.2 OpenShift Container Platform resource requirements on IONOS 
	3.2.1 Compute 
	3.2.2 Storage 
	3.2.3 NTP 
	3.2.4 DNS 
	3.2.5 Load Balancing 

	3.3 General prerequisites needed 
	3.3.1 Pull Secret from console.redhat.com 
	3.3.2 SSH-Key 
	3.3.3 Platform selection 


	 
	4 Prepare general resources for the IONOS Cloud 
	4.1 Log in to the IONOS Data Center Designer (DCD) 
	4.2 Generate authentication token 
	4.3 Adding SSH Key 
	4.4 Reserve public IPv4 addresses 

	5. Architectural overview 
	 
	6 Deploy Openshift Container Platform with the  Agent-based Installer on IONOS Cloud 
	6.1 General description 
	6.1.1 About the Agent-based Installer 
	6.1.2 Understanding the Agent-based Installer 
	6.1.3 Agent-based Installer Workflow 

	6.2 Check Prerequisites 
	6.3 Create the IONOS VDC and the Management Server 
	6.3.1 Running Terraform locally to create initial IONOS resources 
	6.3.2 Preparing the “Management” virtual machine 
	6.3.3 Connecting to the “Management” virtual machine 
	6.3.4 Installing required software 

	6.4 Install a Highly Available OpenShift Container Platform Cluster 
	6.4.1 Prepare the “Terraform” working directories on the “Management” server 
	6.4.2 Provision IONOS Dedicated Core Servers and IONOS NAT Gateway 
	6.4.3 Provision IONOS Network Load Balancer for OpenShift 
	6.4.4 Create DNS Domain or Subdomain 
	6.4.5 Create DNS records 
	6.4.6 Set the Availability Zone for the Dedicated Core Servers in DCD 
	6.4.7 Create the Agent-based Installer ISO image 
	6.4.8 Attach “Minimal ISO” as CDROM drive and set boot order 
	6.4.9 Monitor the OpenShift Container Platform Installation progress 
	6.4.10 Post-install configuration 


	 
	7 Day 2 operations 
	7.1 Configure persistent storage 
	7.2 Configuring Certificates for Ingress and API 
	7.2.1 Replacing the default Ingress Certificate 
	7.2.2 Replacing the default API Server Certificate 

	7.3 Configure OpenShift Image Registry 
	7.4 Configure OpenShift Monitoring 
	7.5 Scaling the OpenShift Cluster 
	7.5.1 Adding Worker Nodes to the Cluster 

	7.6 OpenShift Container Platform updates 
	7.6.1 Understanding OpenShift updates 
	7.6.2 Updating to the next OpenShift z-stream maintenance release 
	7.6.3 Upgrading to the next OpenShift minor release 


	 
	8 Troubleshooting and Support 
	8.1 Gathering log data from a failed Agent-based installation  
	8.2 General OpenShift Container Platform Troubleshooting 


